基于生成对抗网络的机器学习学生成绩预测

Aws Khudhur, N. Ramaha
{"title":"基于生成对抗网络的机器学习学生成绩预测","authors":"Aws Khudhur, N. Ramaha","doi":"10.1109/HORA58378.2023.10156733","DOIUrl":null,"url":null,"abstract":"Predicting student performance is a crucial area of research in the field of education. To improve the accuracy and reliability of student performance prediction, machine learning (ML) techniques have been widely used. In this study, we propose a novel approach for predicting student performance using five ML techniques, which include data analysis, pre-processing techniques, and data augmentation using GAN. We evaluate the proposed approach using a real-world dataset of student academic records and compare the results to those obtained without data augmentation. Our findings demonstrate that data augmentation significantly improves the accuracy and reliability of student performance prediction. Specifically, the random forest classifier achieves the best accuracy of 99.8%. This research contributes to the field of education by providing a more comprehensive and accurate model for predicting student performance, which can support informed decision-making and improve educational outcomes.","PeriodicalId":247679,"journal":{"name":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Students' Performance Prediction Using Machine Learning Based on Generative Adversarial Network\",\"authors\":\"Aws Khudhur, N. Ramaha\",\"doi\":\"10.1109/HORA58378.2023.10156733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting student performance is a crucial area of research in the field of education. To improve the accuracy and reliability of student performance prediction, machine learning (ML) techniques have been widely used. In this study, we propose a novel approach for predicting student performance using five ML techniques, which include data analysis, pre-processing techniques, and data augmentation using GAN. We evaluate the proposed approach using a real-world dataset of student academic records and compare the results to those obtained without data augmentation. Our findings demonstrate that data augmentation significantly improves the accuracy and reliability of student performance prediction. Specifically, the random forest classifier achieves the best accuracy of 99.8%. This research contributes to the field of education by providing a more comprehensive and accurate model for predicting student performance, which can support informed decision-making and improve educational outcomes.\",\"PeriodicalId\":247679,\"journal\":{\"name\":\"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HORA58378.2023.10156733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA58378.2023.10156733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测学生的表现是教育领域研究的一个重要领域。为了提高学生成绩预测的准确性和可靠性,机器学习(ML)技术被广泛应用。在本研究中,我们提出了一种使用五种机器学习技术预测学生表现的新方法,包括数据分析、预处理技术和使用GAN的数据增强。我们使用真实世界的学生学习记录数据集来评估所提出的方法,并将结果与没有数据增强的结果进行比较。我们的研究结果表明,数据增强显著提高了学生成绩预测的准确性和可靠性。具体来说,随机森林分类器达到了99.8%的最佳准确率。这项研究为教育领域提供了一个更全面、更准确的预测学生表现的模型,可以支持明智的决策,提高教育成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Students' Performance Prediction Using Machine Learning Based on Generative Adversarial Network
Predicting student performance is a crucial area of research in the field of education. To improve the accuracy and reliability of student performance prediction, machine learning (ML) techniques have been widely used. In this study, we propose a novel approach for predicting student performance using five ML techniques, which include data analysis, pre-processing techniques, and data augmentation using GAN. We evaluate the proposed approach using a real-world dataset of student academic records and compare the results to those obtained without data augmentation. Our findings demonstrate that data augmentation significantly improves the accuracy and reliability of student performance prediction. Specifically, the random forest classifier achieves the best accuracy of 99.8%. This research contributes to the field of education by providing a more comprehensive and accurate model for predicting student performance, which can support informed decision-making and improve educational outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信