单像素x射线变换及相关反问题

Ru-Yu Lai, G. Uhlmann, J. Zhai, Hanming Zhou
{"title":"单像素x射线变换及相关反问题","authors":"Ru-Yu Lai, G. Uhlmann, J. Zhai, Hanming Zhou","doi":"10.1137/21m1468103","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the nonlinear single pixel X-ray transform $K$ and study the reconstruction of $f$ from the measurement $Kf$. Different from the well-known X-ray transform, the transform $K$ is a nonlinear operator and uses a single detector that integrates all rays in the space. We derive stability estimates and an inversion formula of $K$. We also consider the case where we integrate along geodesics of a Riemannian metric. Moreover, we conduct several numerical experiments to corroborate the theoretical results.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Pixel X-ray Transform and Related Inverse Problems\",\"authors\":\"Ru-Yu Lai, G. Uhlmann, J. Zhai, Hanming Zhou\",\"doi\":\"10.1137/21m1468103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the nonlinear single pixel X-ray transform $K$ and study the reconstruction of $f$ from the measurement $Kf$. Different from the well-known X-ray transform, the transform $K$ is a nonlinear operator and uses a single detector that integrates all rays in the space. We derive stability estimates and an inversion formula of $K$. We also consider the case where we integrate along geodesics of a Riemannian metric. Moreover, we conduct several numerical experiments to corroborate the theoretical results.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1468103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1468103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对非线性单像素x射线变换进行了分析,并研究了从测量值Kf$重建f$的方法。与众所周知的x射线变换不同,变换K是一个非线性算子,它使用一个探测器来整合空间中的所有射线。我们得到了K的稳定性估计和反演公式。我们也考虑沿黎曼度规的测地线积分的情况。此外,我们还进行了一些数值实验来证实理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single Pixel X-ray Transform and Related Inverse Problems
In this paper, we analyze the nonlinear single pixel X-ray transform $K$ and study the reconstruction of $f$ from the measurement $Kf$. Different from the well-known X-ray transform, the transform $K$ is a nonlinear operator and uses a single detector that integrates all rays in the space. We derive stability estimates and an inversion formula of $K$. We also consider the case where we integrate along geodesics of a Riemannian metric. Moreover, we conduct several numerical experiments to corroborate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信