S. Noel, L. Debarge, R. Monna, H. Lautenschlager, R. Schindler, J. Muller
{"title":"通过快速热加工,记录工业多晶硅电池效率","authors":"S. Noel, L. Debarge, R. Monna, H. Lautenschlager, R. Schindler, J. Muller","doi":"10.1109/PVSC.2000.915832","DOIUrl":null,"url":null,"abstract":"Simultaneous diffusion of phosphorus and aluminum by rapid thermal processing (RTP) in the order of one minute is used to realize emitter and back surface field in a single high temperature step, with controlled surface concentration of the dopant in order to obtain suitable front surface recombination velocities. Carefully controlling the mentioned parameter on industrial multicrystalline silicon (Polix(R) from Photowatt) lead to 16.7% efficient solar cells on a surface of 25 cm/sup 2/. All results are discussed in terms of photoconductivity decay and quantum efficiency analysis.","PeriodicalId":139803,"journal":{"name":"Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Record cell efficiency on industrial multicrystalline silicon by rapid thermal processing\",\"authors\":\"S. Noel, L. Debarge, R. Monna, H. Lautenschlager, R. Schindler, J. Muller\",\"doi\":\"10.1109/PVSC.2000.915832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous diffusion of phosphorus and aluminum by rapid thermal processing (RTP) in the order of one minute is used to realize emitter and back surface field in a single high temperature step, with controlled surface concentration of the dopant in order to obtain suitable front surface recombination velocities. Carefully controlling the mentioned parameter on industrial multicrystalline silicon (Polix(R) from Photowatt) lead to 16.7% efficient solar cells on a surface of 25 cm/sup 2/. All results are discussed in terms of photoconductivity decay and quantum efficiency analysis.\",\"PeriodicalId\":139803,\"journal\":{\"name\":\"Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2000.915832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2000.915832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
利用快速热加工(RTP)在1分钟内同时扩散磷和铝,在控制掺杂剂表面浓度的情况下,在一个高温步骤中实现发射面和后表面场,以获得合适的前表面复合速度。在工业多晶硅(Polix(R) from Photowatt)上仔细控制上述参数,可以在25 cm/sup /表面上获得16.7%的效率太阳能电池。所有结果都从光电导衰减和量子效率分析的角度进行了讨论。
Record cell efficiency on industrial multicrystalline silicon by rapid thermal processing
Simultaneous diffusion of phosphorus and aluminum by rapid thermal processing (RTP) in the order of one minute is used to realize emitter and back surface field in a single high temperature step, with controlled surface concentration of the dopant in order to obtain suitable front surface recombination velocities. Carefully controlling the mentioned parameter on industrial multicrystalline silicon (Polix(R) from Photowatt) lead to 16.7% efficient solar cells on a surface of 25 cm/sup 2/. All results are discussed in terms of photoconductivity decay and quantum efficiency analysis.