透明物体:立体匹配中的一个角落案例

Zhiyuan Wu, Shuai Su, Qijun Chen, Rui Fan
{"title":"透明物体:立体匹配中的一个角落案例","authors":"Zhiyuan Wu, Shuai Su, Qijun Chen, Rui Fan","doi":"10.1109/ICRA48891.2023.10161385","DOIUrl":null,"url":null,"abstract":"Stereo matching is a common technique used in 3D perception, but transparent objects such as reflective and penetrable glass pose a challenge as their disparities are often estimated inaccurately. In this paper, we propose transparency-aware stereo (TA-Stereo), an effective solution to tackle this issue. TA-Stereo first utilizes a semantic segmentation or salient object detection network to identify transparent objects, and then homogenizes them to enable stereo matching algorithms to handle them as non-transparent objects. To validate the effectiveness of our proposed TA-Stereo strategy, we collect 260 images containing transparent objects from the KITTI Stereo 2012 and 2015 datasets and manually label pixel-level ground truth. We evaluate our strategy with six deep stereo networks and two types of transparent object detection methods. Our experiments demonstrate that TA-Stereo significantly improves the disparity accuracy of transparent objects. Our project webpage can be accessed at mias.group/TA-Stereo.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transparent Objects: A Corner Case in Stereo Matching\",\"authors\":\"Zhiyuan Wu, Shuai Su, Qijun Chen, Rui Fan\",\"doi\":\"10.1109/ICRA48891.2023.10161385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stereo matching is a common technique used in 3D perception, but transparent objects such as reflective and penetrable glass pose a challenge as their disparities are often estimated inaccurately. In this paper, we propose transparency-aware stereo (TA-Stereo), an effective solution to tackle this issue. TA-Stereo first utilizes a semantic segmentation or salient object detection network to identify transparent objects, and then homogenizes them to enable stereo matching algorithms to handle them as non-transparent objects. To validate the effectiveness of our proposed TA-Stereo strategy, we collect 260 images containing transparent objects from the KITTI Stereo 2012 and 2015 datasets and manually label pixel-level ground truth. We evaluate our strategy with six deep stereo networks and two types of transparent object detection methods. Our experiments demonstrate that TA-Stereo significantly improves the disparity accuracy of transparent objects. Our project webpage can be accessed at mias.group/TA-Stereo.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10161385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

立体匹配是3D感知中常用的一种技术,但透明物体(如反射和穿透玻璃)的差异往往无法准确估计,因此带来了挑战。本文提出了透明感知立体(TA-Stereo),这是解决这一问题的有效方法。TA-Stereo首先利用语义分割或显著目标检测网络来识别透明物体,然后将其均匀化,使立体匹配算法能够将其作为非透明物体处理。为了验证我们提出的TA-Stereo策略的有效性,我们从KITTI Stereo 2012和2015数据集中收集了260张包含透明物体的图像,并手动标记像素级的地面真值。我们用六种深度立体网络和两种透明目标检测方法来评估我们的策略。实验表明,TA-Stereo显著提高了透明物体的视差精度。我们的项目网页可以在mia .group/TA-Stereo访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transparent Objects: A Corner Case in Stereo Matching
Stereo matching is a common technique used in 3D perception, but transparent objects such as reflective and penetrable glass pose a challenge as their disparities are often estimated inaccurately. In this paper, we propose transparency-aware stereo (TA-Stereo), an effective solution to tackle this issue. TA-Stereo first utilizes a semantic segmentation or salient object detection network to identify transparent objects, and then homogenizes them to enable stereo matching algorithms to handle them as non-transparent objects. To validate the effectiveness of our proposed TA-Stereo strategy, we collect 260 images containing transparent objects from the KITTI Stereo 2012 and 2015 datasets and manually label pixel-level ground truth. We evaluate our strategy with six deep stereo networks and two types of transparent object detection methods. Our experiments demonstrate that TA-Stereo significantly improves the disparity accuracy of transparent objects. Our project webpage can be accessed at mias.group/TA-Stereo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信