一种增强的面向算子的遗传搜索算法

Jeffrey D. Stumpf, X. Feng, R. Kelnhofer
{"title":"一种增强的面向算子的遗传搜索算法","authors":"Jeffrey D. Stumpf, X. Feng, R. Kelnhofer","doi":"10.1109/ICEC.1994.350010","DOIUrl":null,"url":null,"abstract":"This paper proposes a new search process incorporated into an operator-oriented genetic algorithm (GA). The new search algorithm solves problems in the context of invertible symbolic operations on a combinational finite state environment. The algorithm exploits the GA's ability to search for solutions without regard to a priori knowledge of the problem domain. The validity of the algorithm is illustrated by solving Rubik's cube.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An enhanced operator-oriented genetic search algorithm\",\"authors\":\"Jeffrey D. Stumpf, X. Feng, R. Kelnhofer\",\"doi\":\"10.1109/ICEC.1994.350010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new search process incorporated into an operator-oriented genetic algorithm (GA). The new search algorithm solves problems in the context of invertible symbolic operations on a combinational finite state environment. The algorithm exploits the GA's ability to search for solutions without regard to a priori knowledge of the problem domain. The validity of the algorithm is illustrated by solving Rubik's cube.<<ETX>>\",\"PeriodicalId\":393865,\"journal\":{\"name\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1994.350010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.350010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的基于算子的遗传算法的搜索过程。新的搜索算法解决了组合有限状态环境下可逆符号运算的问题。该算法利用遗传算法在不考虑问题域先验知识的情况下搜索解决方案的能力。通过对魔方的求解,说明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An enhanced operator-oriented genetic search algorithm
This paper proposes a new search process incorporated into an operator-oriented genetic algorithm (GA). The new search algorithm solves problems in the context of invertible symbolic operations on a combinational finite state environment. The algorithm exploits the GA's ability to search for solutions without regard to a priori knowledge of the problem domain. The validity of the algorithm is illustrated by solving Rubik's cube.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信