基于LSTM网络的二元短期电力预测

Asim Zaheer UD DIN, Y. Ayaz, Momena Hasan, J. Khan, M. Salman
{"title":"基于LSTM网络的二元短期电力预测","authors":"Asim Zaheer UD DIN, Y. Ayaz, Momena Hasan, J. Khan, M. Salman","doi":"10.1109/ICRAI47710.2019.8967378","DOIUrl":null,"url":null,"abstract":"In this work we have utilized Long-shortterm-memory network (LSTM) to generate short-term 24 hours in advance forecast for two (bivariate) independent time series. The work presents LSTM forecasting performance for three different weight optimizing algorithms, namely, Adaptive moment estimation, Root mean square propagation, and Stochastic gradient descent with momentum. Also, investigation into forecasting performance on changes in LSTM network and training options has been made. Furthermore, effects of different input features on LSTM short-term forecasts are demonstrated. The presented work has been employed for Peshawar Electric Supply Company (PESCO) 4 years electric power data, recorded at 30 minutes resolution. From all the forecasting test cases of import power and export power for PESCO; the lowest values obtained are MAPE = 9.47 % and MAPE = 12.37 % for import power and export power respectively.","PeriodicalId":429384,"journal":{"name":"2019 International Conference on Robotics and Automation in Industry (ICRAI)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bivariate Short-term Electric Power Forecasting using LSTM Network\",\"authors\":\"Asim Zaheer UD DIN, Y. Ayaz, Momena Hasan, J. Khan, M. Salman\",\"doi\":\"10.1109/ICRAI47710.2019.8967378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we have utilized Long-shortterm-memory network (LSTM) to generate short-term 24 hours in advance forecast for two (bivariate) independent time series. The work presents LSTM forecasting performance for three different weight optimizing algorithms, namely, Adaptive moment estimation, Root mean square propagation, and Stochastic gradient descent with momentum. Also, investigation into forecasting performance on changes in LSTM network and training options has been made. Furthermore, effects of different input features on LSTM short-term forecasts are demonstrated. The presented work has been employed for Peshawar Electric Supply Company (PESCO) 4 years electric power data, recorded at 30 minutes resolution. From all the forecasting test cases of import power and export power for PESCO; the lowest values obtained are MAPE = 9.47 % and MAPE = 12.37 % for import power and export power respectively.\",\"PeriodicalId\":429384,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation in Industry (ICRAI)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation in Industry (ICRAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAI47710.2019.8967378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation in Industry (ICRAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAI47710.2019.8967378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们利用长短期记忆网络(LSTM)对两个(二元)独立时间序列进行了24小时的短期预测。本文介绍了自适应矩估计、均方根传播和随机动量梯度下降三种不同权重优化算法的LSTM预测性能。同时,对LSTM网络变化和训练方案的预测性能进行了研究。此外,还验证了不同输入特征对LSTM短期预测的影响。所提出的工作已用于白沙瓦电力供应公司(PESCO) 4年的电力数据,以30分钟的分辨率记录。从PESCO进出口电力的所有预测测试案例中;最小值为进口功率MAPE = 9.47%,出口功率MAPE = 12.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bivariate Short-term Electric Power Forecasting using LSTM Network
In this work we have utilized Long-shortterm-memory network (LSTM) to generate short-term 24 hours in advance forecast for two (bivariate) independent time series. The work presents LSTM forecasting performance for three different weight optimizing algorithms, namely, Adaptive moment estimation, Root mean square propagation, and Stochastic gradient descent with momentum. Also, investigation into forecasting performance on changes in LSTM network and training options has been made. Furthermore, effects of different input features on LSTM short-term forecasts are demonstrated. The presented work has been employed for Peshawar Electric Supply Company (PESCO) 4 years electric power data, recorded at 30 minutes resolution. From all the forecasting test cases of import power and export power for PESCO; the lowest values obtained are MAPE = 9.47 % and MAPE = 12.37 % for import power and export power respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信