{"title":"液滴在超疏水表面的加热和蒸发:初步结果","authors":"D. Antonov, R. Fedorenko, P. Strizhak, S. Sazhin","doi":"10.11159/icffts21.120","DOIUrl":null,"url":null,"abstract":"Extended Abstract The importance of investigating the heating and evaporation of droplets on hydrophobic (contact angle ∼ 110°) and superhydrophobic (contact angle ∼ 160°) surfaces is well known [1]. Several models of the phenomena have been suggested and described in the literature [2,3]. All the models described so far, however, have been based on numerical solutions to the relevant transport equations and their applicability to the analysis of practical engineering problems is limited in many cases [3]. This abstract is focused on the preliminary results of the development of a new simple model of the phenomena. This model can capture the most important features of the processes and is simple enough for most engineering applications . The new model assumes that the contact area of the droplet with the superhydrophobic surface is much smaller than the area of the droplet surface. This assumption allows us to consider the droplet heating and evaporation as spherically symmetric processes. Heat supply to the droplet through the contact area of the droplet with the surface is considered as perturbation. Heating of the droplet by ambient gas is described by a spherically symmetric heat conduction equation with the Robin boundary condition at the droplet surface. The effective thermal conductivity model, in which the effect of ambient air velocity is accounted for by the modification of the liquid thermal conductivity, was used. The analytical solution to the heat conduction equation is incorporated into the numerical code and used at each","PeriodicalId":101634,"journal":{"name":"Proceedings of the 2nd International Conference on Fluid Flow and Thermal Science (ICFFTS'21)","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heating and Evaporation of Droplets on a Super-hydrophobic Surface:\\nPreliminary Results\",\"authors\":\"D. Antonov, R. Fedorenko, P. Strizhak, S. Sazhin\",\"doi\":\"10.11159/icffts21.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Abstract The importance of investigating the heating and evaporation of droplets on hydrophobic (contact angle ∼ 110°) and superhydrophobic (contact angle ∼ 160°) surfaces is well known [1]. Several models of the phenomena have been suggested and described in the literature [2,3]. All the models described so far, however, have been based on numerical solutions to the relevant transport equations and their applicability to the analysis of practical engineering problems is limited in many cases [3]. This abstract is focused on the preliminary results of the development of a new simple model of the phenomena. This model can capture the most important features of the processes and is simple enough for most engineering applications . The new model assumes that the contact area of the droplet with the superhydrophobic surface is much smaller than the area of the droplet surface. This assumption allows us to consider the droplet heating and evaporation as spherically symmetric processes. Heat supply to the droplet through the contact area of the droplet with the surface is considered as perturbation. Heating of the droplet by ambient gas is described by a spherically symmetric heat conduction equation with the Robin boundary condition at the droplet surface. The effective thermal conductivity model, in which the effect of ambient air velocity is accounted for by the modification of the liquid thermal conductivity, was used. The analytical solution to the heat conduction equation is incorporated into the numerical code and used at each\",\"PeriodicalId\":101634,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Fluid Flow and Thermal Science (ICFFTS'21)\",\"volume\":\"289 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Fluid Flow and Thermal Science (ICFFTS'21)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/icffts21.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Fluid Flow and Thermal Science (ICFFTS'21)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icffts21.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heating and Evaporation of Droplets on a Super-hydrophobic Surface:
Preliminary Results
Extended Abstract The importance of investigating the heating and evaporation of droplets on hydrophobic (contact angle ∼ 110°) and superhydrophobic (contact angle ∼ 160°) surfaces is well known [1]. Several models of the phenomena have been suggested and described in the literature [2,3]. All the models described so far, however, have been based on numerical solutions to the relevant transport equations and their applicability to the analysis of practical engineering problems is limited in many cases [3]. This abstract is focused on the preliminary results of the development of a new simple model of the phenomena. This model can capture the most important features of the processes and is simple enough for most engineering applications . The new model assumes that the contact area of the droplet with the superhydrophobic surface is much smaller than the area of the droplet surface. This assumption allows us to consider the droplet heating and evaporation as spherically symmetric processes. Heat supply to the droplet through the contact area of the droplet with the surface is considered as perturbation. Heating of the droplet by ambient gas is described by a spherically symmetric heat conduction equation with the Robin boundary condition at the droplet surface. The effective thermal conductivity model, in which the effect of ambient air velocity is accounted for by the modification of the liquid thermal conductivity, was used. The analytical solution to the heat conduction equation is incorporated into the numerical code and used at each