基于人工神经网络的肿瘤模型参数识别

Melánia Puskás, Dániel András Drexler
{"title":"基于人工神经网络的肿瘤模型参数识别","authors":"Melánia Puskás, Dániel András Drexler","doi":"10.1109/SAMI50585.2021.9378639","DOIUrl":null,"url":null,"abstract":"Mathematical models of tumor growth and the effect of therapy is fundamental for personalizing and optimizing anticancer therapies. The aim of the research is to provide a good estimation of personalized tumor model parameters based on measurements carried out on the patient. We use in silico experiments to create a large set of training data in a span that covers real-life scenarios. The data are used to train neural networks which provide a good initial guess for the model parameters. The estimated parameters can be used as initial estimations for more sophisticated, but local identification algorithms.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Parameter identification of a tumor model using artificial neural networks\",\"authors\":\"Melánia Puskás, Dániel András Drexler\",\"doi\":\"10.1109/SAMI50585.2021.9378639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical models of tumor growth and the effect of therapy is fundamental for personalizing and optimizing anticancer therapies. The aim of the research is to provide a good estimation of personalized tumor model parameters based on measurements carried out on the patient. We use in silico experiments to create a large set of training data in a span that covers real-life scenarios. The data are used to train neural networks which provide a good initial guess for the model parameters. The estimated parameters can be used as initial estimations for more sophisticated, but local identification algorithms.\",\"PeriodicalId\":402414,\"journal\":{\"name\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI50585.2021.9378639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

肿瘤生长和治疗效果的数学模型是个性化和优化抗癌治疗的基础。该研究的目的是根据对患者进行的测量提供一个良好的个性化肿瘤模型参数估计。我们使用计算机实验来创建涵盖现实生活场景的大型训练数据集。这些数据被用来训练神经网络,为模型参数提供一个良好的初始猜测。估计的参数可以用作更复杂的初始估计,但局部识别算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter identification of a tumor model using artificial neural networks
Mathematical models of tumor growth and the effect of therapy is fundamental for personalizing and optimizing anticancer therapies. The aim of the research is to provide a good estimation of personalized tumor model parameters based on measurements carried out on the patient. We use in silico experiments to create a large set of training data in a span that covers real-life scenarios. The data are used to train neural networks which provide a good initial guess for the model parameters. The estimated parameters can be used as initial estimations for more sophisticated, but local identification algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信