基于高频相位标记SSVEP刺激的仿人机器人远程呈现控制

Hong Hu, Jing Zhao, Hongbo Li, Wei Li, Genshe Chen
{"title":"基于高频相位标记SSVEP刺激的仿人机器人远程呈现控制","authors":"Hong Hu, Jing Zhao, Hongbo Li, Wei Li, Genshe Chen","doi":"10.1109/AMC.2016.7496353","DOIUrl":null,"url":null,"abstract":"This paper presents a high-frequency steady-state visual evoked potential-based model for a brain-controlled humanoid robot. An advantage of this model is to reduce subjects' fatigue by using visual stimuli with a frequency of 30Hz. This study optimizes the stimulus patterns to increase the brain signals and applies a fuzzy-based classification approach to identify human mental activities and convert them into control commands. Seven subjects successfully navigated a NAO humanoid robot to walk through a map with obstacle avoidance based on live video feedback. The on-line robot navigation experiment reached the average control success rate of 94.26% and an average collision of 1.8 times during a mission.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Telepresence control of humanoid robot via high-frequency phase-tagged SSVEP stimuli\",\"authors\":\"Hong Hu, Jing Zhao, Hongbo Li, Wei Li, Genshe Chen\",\"doi\":\"10.1109/AMC.2016.7496353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high-frequency steady-state visual evoked potential-based model for a brain-controlled humanoid robot. An advantage of this model is to reduce subjects' fatigue by using visual stimuli with a frequency of 30Hz. This study optimizes the stimulus patterns to increase the brain signals and applies a fuzzy-based classification approach to identify human mental activities and convert them into control commands. Seven subjects successfully navigated a NAO humanoid robot to walk through a map with obstacle avoidance based on live video feedback. The on-line robot navigation experiment reached the average control success rate of 94.26% and an average collision of 1.8 times during a mission.\",\"PeriodicalId\":273847,\"journal\":{\"name\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2016.7496353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于高频稳态视觉诱发电位的脑控人形机器人模型。该模型的一个优点是通过使用频率为30Hz的视觉刺激来减少受试者的疲劳。本研究通过优化刺激模式来增加大脑信号,并应用基于模糊的分类方法来识别人类的心理活动并将其转化为控制命令。根据实时视频反馈,7名受试者成功地操纵NAO人形机器人通过地图避障。在线机器人导航实验平均控制成功率为94.26%,每次任务平均碰撞次数为1.8次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Telepresence control of humanoid robot via high-frequency phase-tagged SSVEP stimuli
This paper presents a high-frequency steady-state visual evoked potential-based model for a brain-controlled humanoid robot. An advantage of this model is to reduce subjects' fatigue by using visual stimuli with a frequency of 30Hz. This study optimizes the stimulus patterns to increase the brain signals and applies a fuzzy-based classification approach to identify human mental activities and convert them into control commands. Seven subjects successfully navigated a NAO humanoid robot to walk through a map with obstacle avoidance based on live video feedback. The on-line robot navigation experiment reached the average control success rate of 94.26% and an average collision of 1.8 times during a mission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信