三角剖分方法中特征检测器对人脸关键点重复性质量的评价

A. Kusnadi, Wella, R. Winantyo, I. Z. Pane
{"title":"三角剖分方法中特征检测器对人脸关键点重复性质量的评价","authors":"A. Kusnadi, Wella, R. Winantyo, I. Z. Pane","doi":"10.1109/ICSCEE.2018.8538385","DOIUrl":null,"url":null,"abstract":"This study derived from a research focusing on 3D face recognition using ToF camera. But the system can't be used outdoors, because of a backlight. To solve this problem, a commercial digital single-lens reflex (DSLR) camera will be used. It can be approached y solving the stereo-view reconstruction problem for each pair of consecutive images. To reconstruct an object, projection matrix estimation from 2D point correspondences will be needed. The accuracy of 3D reconstruction is highly dependent on the corresponding points of 2D data projections from images to other images. In this research, The detectors are Harris-Stephens, SURF, FAST, Minimum Eigenvalue, and BRISK have been tested and analyzed through black box test. To evaluate feature detectors performance, the repeatability score for a given pair of images is computed. To do that it can use recall and precision. The best detector is the Harris Stephens detector because it has the best F-measure values of 0.46.","PeriodicalId":265737,"journal":{"name":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluation of Feature Detectors on Repeatability Quality of Facial Keypoints In Triangulation Method\",\"authors\":\"A. Kusnadi, Wella, R. Winantyo, I. Z. Pane\",\"doi\":\"10.1109/ICSCEE.2018.8538385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study derived from a research focusing on 3D face recognition using ToF camera. But the system can't be used outdoors, because of a backlight. To solve this problem, a commercial digital single-lens reflex (DSLR) camera will be used. It can be approached y solving the stereo-view reconstruction problem for each pair of consecutive images. To reconstruct an object, projection matrix estimation from 2D point correspondences will be needed. The accuracy of 3D reconstruction is highly dependent on the corresponding points of 2D data projections from images to other images. In this research, The detectors are Harris-Stephens, SURF, FAST, Minimum Eigenvalue, and BRISK have been tested and analyzed through black box test. To evaluate feature detectors performance, the repeatability score for a given pair of images is computed. To do that it can use recall and precision. The best detector is the Harris Stephens detector because it has the best F-measure values of 0.46.\",\"PeriodicalId\":265737,\"journal\":{\"name\":\"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCEE.2018.8538385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCEE.2018.8538385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究来源于一项基于ToF相机的三维人脸识别研究。但是这个系统不能在室外使用,因为有背光。为了解决这个问题,将使用商用数码单反相机(DSLR)。它可以通过求解每对连续图像的立体视图重建问题来解决。为了重建一个物体,需要从二维点对应中估计投影矩阵。三维重建的精度高度依赖于二维数据从图像投影到其他图像的对应点。本研究对Harris-Stephens、SURF、FAST、Minimum Eigenvalue和BRISK四种探测器进行了黑盒测试和分析。为了评估特征检测器的性能,计算给定图像对的可重复性分数。要做到这一点,它可以使用召回和精确。最好的探测器是哈里斯·斯蒂芬斯探测器,因为它的最佳f测量值为0.46。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Feature Detectors on Repeatability Quality of Facial Keypoints In Triangulation Method
This study derived from a research focusing on 3D face recognition using ToF camera. But the system can't be used outdoors, because of a backlight. To solve this problem, a commercial digital single-lens reflex (DSLR) camera will be used. It can be approached y solving the stereo-view reconstruction problem for each pair of consecutive images. To reconstruct an object, projection matrix estimation from 2D point correspondences will be needed. The accuracy of 3D reconstruction is highly dependent on the corresponding points of 2D data projections from images to other images. In this research, The detectors are Harris-Stephens, SURF, FAST, Minimum Eigenvalue, and BRISK have been tested and analyzed through black box test. To evaluate feature detectors performance, the repeatability score for a given pair of images is computed. To do that it can use recall and precision. The best detector is the Harris Stephens detector because it has the best F-measure values of 0.46.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信