面向关节刚度可变控制的硅酮关节液压调制

Satyam Bhawsinghka, Natasha Troxler, S. Walker, J. Davidson
{"title":"面向关节刚度可变控制的硅酮关节液压调制","authors":"Satyam Bhawsinghka, Natasha Troxler, S. Walker, J. Davidson","doi":"10.1109/RoboSoft55895.2023.10121932","DOIUrl":null,"url":null,"abstract":"Ahstract-This work describes the development of a hydraulic knuckle designed to modulate joint stiffness in an underactuated, underwater gripper. The knuckles are pressurized with water to control their stiffness. Compression and tension characterization showed that the knuckles can provide up to 34 N of resistive force in compression and 47 N of resistive force in tension. Stiffness of the knuckles was found to vary linearly with pressure. A parallel, tendon-driven underactuated gripper was fabricated to explore two relationships: finger configurations vs. knuckle hydraulic pressure and joint stiffness vs. grasp strength. This gripper demonstrated that softer knuckles enable a wrap grasp and stiffer knuckles enable a pinch grasp. Grasp strength testing showed that the planar hand can resist up to 23 N of force at 200 mA motor current, and stiffer grasps can sustain greater pull out forces.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydraulic Modulation of Silicone Knuckles for Variable Control of Joint Stiffness\",\"authors\":\"Satyam Bhawsinghka, Natasha Troxler, S. Walker, J. Davidson\",\"doi\":\"10.1109/RoboSoft55895.2023.10121932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ahstract-This work describes the development of a hydraulic knuckle designed to modulate joint stiffness in an underactuated, underwater gripper. The knuckles are pressurized with water to control their stiffness. Compression and tension characterization showed that the knuckles can provide up to 34 N of resistive force in compression and 47 N of resistive force in tension. Stiffness of the knuckles was found to vary linearly with pressure. A parallel, tendon-driven underactuated gripper was fabricated to explore two relationships: finger configurations vs. knuckle hydraulic pressure and joint stiffness vs. grasp strength. This gripper demonstrated that softer knuckles enable a wrap grasp and stiffer knuckles enable a pinch grasp. Grasp strength testing showed that the planar hand can resist up to 23 N of force at 200 mA motor current, and stiffer grasps can sustain greater pull out forces.\",\"PeriodicalId\":250981,\"journal\":{\"name\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoboSoft55895.2023.10121932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10121932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:这项工作描述了一种液压关节的发展,旨在调节关节刚度在一个欠驱动的水下抓手。指关节用水加压以控制其僵硬度。压缩和拉伸特性表明,关节在压缩时可提供34 N的阻力,在拉伸时可提供47 N的阻力。关节的刚度随压力呈线性变化。制作了一个平行的、肌腱驱动的欠驱动抓取器,以探索两种关系:手指构型与关节液压和关节刚度与抓取强度。这个夹持器表明,较软的指关节使一个包裹的把握和较硬的指关节使捏把握。抓握强度测试表明,在200 mA电机电流下,平面手可以承受高达23 N的力,更硬的抓握可以承受更大的拉出力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydraulic Modulation of Silicone Knuckles for Variable Control of Joint Stiffness
Ahstract-This work describes the development of a hydraulic knuckle designed to modulate joint stiffness in an underactuated, underwater gripper. The knuckles are pressurized with water to control their stiffness. Compression and tension characterization showed that the knuckles can provide up to 34 N of resistive force in compression and 47 N of resistive force in tension. Stiffness of the knuckles was found to vary linearly with pressure. A parallel, tendon-driven underactuated gripper was fabricated to explore two relationships: finger configurations vs. knuckle hydraulic pressure and joint stiffness vs. grasp strength. This gripper demonstrated that softer knuckles enable a wrap grasp and stiffer knuckles enable a pinch grasp. Grasp strength testing showed that the planar hand can resist up to 23 N of force at 200 mA motor current, and stiffer grasps can sustain greater pull out forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信