{"title":"IPMSM驱动VSI非线性辨识的鲁棒自调试技术","authors":"Sumedh Dhale, B. Nahid-Mobarakeh, A. Emadi","doi":"10.1109/IECON48115.2021.9589429","DOIUrl":null,"url":null,"abstract":"This paper presents a novel self-commissioning procedure for the identification of inverter nonlinearity constant comprised of the average voltage drops on switches and diodes in conduction state and switching delays. Simultaneous estimation of phase resistance, d-axis synchronous inductance, and inverter nonlinearity constant is achieved at standstill condition by injecting sinusoidal d-axis current. The advantages of the proposed self-commissioning method are twofold: 1) The co-estimation capability provides insensitivity towards errors in resistance and d-axis inductance. 2) While sinusoidal d-axis current is injected, the q-axis current is actively maintained at 0A. Thus, no torque is generated during the self-commissioning period. The effect of discontinuous distortions due to non-ideal switching as well as current sensor noise is rejected by limiting the estimation period within a feasible estimation window. Thereby, a necessary minimum phase current magnitude is established for achieving accurate estimation. This paper also provides parameter convergence analysis and the existence of unique solutions during proposed self-commissioning process, further justifying the choice of proposed feasible estimation region.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"16 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Robust Self-Commissioning Technique for Identification of the VSI Nonlinearity Effect in IPMSM Drives\",\"authors\":\"Sumedh Dhale, B. Nahid-Mobarakeh, A. Emadi\",\"doi\":\"10.1109/IECON48115.2021.9589429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel self-commissioning procedure for the identification of inverter nonlinearity constant comprised of the average voltage drops on switches and diodes in conduction state and switching delays. Simultaneous estimation of phase resistance, d-axis synchronous inductance, and inverter nonlinearity constant is achieved at standstill condition by injecting sinusoidal d-axis current. The advantages of the proposed self-commissioning method are twofold: 1) The co-estimation capability provides insensitivity towards errors in resistance and d-axis inductance. 2) While sinusoidal d-axis current is injected, the q-axis current is actively maintained at 0A. Thus, no torque is generated during the self-commissioning period. The effect of discontinuous distortions due to non-ideal switching as well as current sensor noise is rejected by limiting the estimation period within a feasible estimation window. Thereby, a necessary minimum phase current magnitude is established for achieving accurate estimation. This paper also provides parameter convergence analysis and the existence of unique solutions during proposed self-commissioning process, further justifying the choice of proposed feasible estimation region.\",\"PeriodicalId\":443337,\"journal\":{\"name\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"16 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON48115.2021.9589429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Robust Self-Commissioning Technique for Identification of the VSI Nonlinearity Effect in IPMSM Drives
This paper presents a novel self-commissioning procedure for the identification of inverter nonlinearity constant comprised of the average voltage drops on switches and diodes in conduction state and switching delays. Simultaneous estimation of phase resistance, d-axis synchronous inductance, and inverter nonlinearity constant is achieved at standstill condition by injecting sinusoidal d-axis current. The advantages of the proposed self-commissioning method are twofold: 1) The co-estimation capability provides insensitivity towards errors in resistance and d-axis inductance. 2) While sinusoidal d-axis current is injected, the q-axis current is actively maintained at 0A. Thus, no torque is generated during the self-commissioning period. The effect of discontinuous distortions due to non-ideal switching as well as current sensor noise is rejected by limiting the estimation period within a feasible estimation window. Thereby, a necessary minimum phase current magnitude is established for achieving accurate estimation. This paper also provides parameter convergence analysis and the existence of unique solutions during proposed self-commissioning process, further justifying the choice of proposed feasible estimation region.