毫米波无线网络芯片使用深度强化学习

Suraj Jog, Zikun Liu, Antonio Franques, V. Fernando, Haitham Hassanieh, S. Abadal, J. Torrellas
{"title":"毫米波无线网络芯片使用深度强化学习","authors":"Suraj Jog, Zikun Liu, Antonio Franques, V. Fernando, Haitham Hassanieh, S. Abadal, J. Torrellas","doi":"10.1145/3405837.3411396","DOIUrl":null,"url":null,"abstract":"Wireless Network-on-Chip (NoC) has emerged as a promising solution to scale chip multi-core processors to hundreds of cores. However, traditional medium access protocols fall short here since the traffic patterns on wireless NoCs tend to be very dynamic and can change drastically across different cores, different time intervals and different applications. In this work, we present NeuMAC, a unified approach that combines networking, architecture and AI to generate highly adaptive medium access protocols that can learn and optimize for the structure, correlations and statistics of the traffic patterns on the NoC. Our results show that NeuMAC can quickly adapt to NoC traffic to provide significant gains in terms of latency and overall execution time, improving the execution time by up to 1.69X - 3.74X.","PeriodicalId":396272,"journal":{"name":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Millimeter wave wireless network on chip using deep reinforcement learning\",\"authors\":\"Suraj Jog, Zikun Liu, Antonio Franques, V. Fernando, Haitham Hassanieh, S. Abadal, J. Torrellas\",\"doi\":\"10.1145/3405837.3411396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Network-on-Chip (NoC) has emerged as a promising solution to scale chip multi-core processors to hundreds of cores. However, traditional medium access protocols fall short here since the traffic patterns on wireless NoCs tend to be very dynamic and can change drastically across different cores, different time intervals and different applications. In this work, we present NeuMAC, a unified approach that combines networking, architecture and AI to generate highly adaptive medium access protocols that can learn and optimize for the structure, correlations and statistics of the traffic patterns on the NoC. Our results show that NeuMAC can quickly adapt to NoC traffic to provide significant gains in terms of latency and overall execution time, improving the execution time by up to 1.69X - 3.74X.\",\"PeriodicalId\":396272,\"journal\":{\"name\":\"Proceedings of the SIGCOMM '20 Poster and Demo Sessions\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIGCOMM '20 Poster and Demo Sessions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3405837.3411396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3405837.3411396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线片上网络(NoC)已经成为将芯片多核处理器扩展到数百核的一种有前途的解决方案。然而,传统的媒体访问协议在这方面有不足之处,因为无线noc上的流量模式往往是非常动态的,并且可能在不同的核心、不同的时间间隔和不同的应用程序之间发生巨大变化。在这项工作中,我们提出了NeuMAC,这是一种结合网络、架构和人工智能的统一方法,可以生成高度自适应的媒体访问协议,可以学习和优化NoC上流量模式的结构、相关性和统计。我们的结果表明,NeuMAC可以快速适应NoC流量,在延迟和总体执行时间方面提供显著的收益,将执行时间提高1.69 - 3.74倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Millimeter wave wireless network on chip using deep reinforcement learning
Wireless Network-on-Chip (NoC) has emerged as a promising solution to scale chip multi-core processors to hundreds of cores. However, traditional medium access protocols fall short here since the traffic patterns on wireless NoCs tend to be very dynamic and can change drastically across different cores, different time intervals and different applications. In this work, we present NeuMAC, a unified approach that combines networking, architecture and AI to generate highly adaptive medium access protocols that can learn and optimize for the structure, correlations and statistics of the traffic patterns on the NoC. Our results show that NeuMAC can quickly adapt to NoC traffic to provide significant gains in terms of latency and overall execution time, improving the execution time by up to 1.69X - 3.74X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信