使用先进机器学习算法的化验型检测

Marzia Hoque Tania, Khin T. Lwin, A. Shabut, Kamal Abu-Hassan, M. S. Kaiser, M. A. Hossain
{"title":"使用先进机器学习算法的化验型检测","authors":"Marzia Hoque Tania, Khin T. Lwin, A. Shabut, Kamal Abu-Hassan, M. S. Kaiser, M. A. Hossain","doi":"10.1109/SKIMA47702.2019.8982449","DOIUrl":null,"url":null,"abstract":"The colourimetric analysis has been used in diversified fields for years. This paper provides a unique overview of colourimetric tests from the perspective of computer vision by describing different aspects of a colourimetric test in the context of image processing, followed by an investigation into the development of a colorimetric assay type detection system using advanced machine learning algorithms. To the best of our knowledge, this is the first attempt to define colourimetric assay types from the eyes of a machine and perform any colorimetric test using deep learning. This investigation utilizes the state-of-the-art pre-trained models of Convolutional Neural Network (CNN) to perform the assay type detection of an enzyme-linked immunosorbent assay (ELISA) and lateral flow assay (LFA). The ELISA dataset contains images of both positive and negative samples, prepared for the plasmonic ELISA based TB-antigen specific antibody detection. The LFA dataset contains images of the universal pH indicator paper of eight pH levels. It is noted that the pre-trained models offered 100% accurate visual recognition for the assay type detection. Such detection can assist novice users to initiate a colorimetric test using his/her personal digital devices. The assay type detection can also aid in calibrating an image-based colorimetric classification.","PeriodicalId":245523,"journal":{"name":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Assay Type Detection Using Advanced Machine Learning Algorithms\",\"authors\":\"Marzia Hoque Tania, Khin T. Lwin, A. Shabut, Kamal Abu-Hassan, M. S. Kaiser, M. A. Hossain\",\"doi\":\"10.1109/SKIMA47702.2019.8982449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The colourimetric analysis has been used in diversified fields for years. This paper provides a unique overview of colourimetric tests from the perspective of computer vision by describing different aspects of a colourimetric test in the context of image processing, followed by an investigation into the development of a colorimetric assay type detection system using advanced machine learning algorithms. To the best of our knowledge, this is the first attempt to define colourimetric assay types from the eyes of a machine and perform any colorimetric test using deep learning. This investigation utilizes the state-of-the-art pre-trained models of Convolutional Neural Network (CNN) to perform the assay type detection of an enzyme-linked immunosorbent assay (ELISA) and lateral flow assay (LFA). The ELISA dataset contains images of both positive and negative samples, prepared for the plasmonic ELISA based TB-antigen specific antibody detection. The LFA dataset contains images of the universal pH indicator paper of eight pH levels. It is noted that the pre-trained models offered 100% accurate visual recognition for the assay type detection. Such detection can assist novice users to initiate a colorimetric test using his/her personal digital devices. The assay type detection can also aid in calibrating an image-based colorimetric classification.\",\"PeriodicalId\":245523,\"journal\":{\"name\":\"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKIMA47702.2019.8982449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA47702.2019.8982449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

比色分析已广泛应用于多个领域。本文通过描述图像处理背景下比色测试的不同方面,从计算机视觉的角度提供了比色测试的独特概述,随后调查了使用先进机器学习算法的比色分析类型检测系统的开发。据我们所知,这是第一次尝试从机器的眼睛定义比色分析类型,并使用深度学习执行任何比色测试。本研究利用最先进的卷积神经网络(CNN)预训练模型来执行酶联免疫吸附试验(ELISA)和侧流试验(LFA)的分析类型检测。ELISA数据集包含阳性和阴性样品的图像,用于基于等离子体ELISA的tb抗原特异性抗体检测。LFA数据集包含八个pH值水平的通用pH指标纸的图像。值得注意的是,预训练的模型为分析类型检测提供了100%准确的视觉识别。这种检测可以帮助新手用户使用他/她的个人数字设备启动比色测试。分析类型检测也可以帮助校准基于图像的比色分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assay Type Detection Using Advanced Machine Learning Algorithms
The colourimetric analysis has been used in diversified fields for years. This paper provides a unique overview of colourimetric tests from the perspective of computer vision by describing different aspects of a colourimetric test in the context of image processing, followed by an investigation into the development of a colorimetric assay type detection system using advanced machine learning algorithms. To the best of our knowledge, this is the first attempt to define colourimetric assay types from the eyes of a machine and perform any colorimetric test using deep learning. This investigation utilizes the state-of-the-art pre-trained models of Convolutional Neural Network (CNN) to perform the assay type detection of an enzyme-linked immunosorbent assay (ELISA) and lateral flow assay (LFA). The ELISA dataset contains images of both positive and negative samples, prepared for the plasmonic ELISA based TB-antigen specific antibody detection. The LFA dataset contains images of the universal pH indicator paper of eight pH levels. It is noted that the pre-trained models offered 100% accurate visual recognition for the assay type detection. Such detection can assist novice users to initiate a colorimetric test using his/her personal digital devices. The assay type detection can also aid in calibrating an image-based colorimetric classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信