自动驾驶车辆的轨迹规划原理

Heping Hang, Gang Huo, Zixia Gong
{"title":"自动驾驶车辆的轨迹规划原理","authors":"Heping Hang, Gang Huo, Zixia Gong","doi":"10.1109/CAR.2009.14","DOIUrl":null,"url":null,"abstract":"In this paper, a proposition about the relationship between path curve and cart motion is proposed and proved. Based on the proposition, the cubic polynomial is provided as a transition path. This is convenient for designing the trajectory and uniqueness for determining parameters of the path curves by the allowable minimal turn radius of cart. Experimental results, performed on the prototype cart, show that the cart tracks given paths with the cubic polynomial as a transition smoothly and accurately.","PeriodicalId":320307,"journal":{"name":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Principle of Trajectory Planning for an Autonomous Vehicle\",\"authors\":\"Heping Hang, Gang Huo, Zixia Gong\",\"doi\":\"10.1109/CAR.2009.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a proposition about the relationship between path curve and cart motion is proposed and proved. Based on the proposition, the cubic polynomial is provided as a transition path. This is convenient for designing the trajectory and uniqueness for determining parameters of the path curves by the allowable minimal turn radius of cart. Experimental results, performed on the prototype cart, show that the cart tracks given paths with the cubic polynomial as a transition smoothly and accurately.\",\"PeriodicalId\":320307,\"journal\":{\"name\":\"2009 International Asia Conference on Informatics in Control, Automation and Robotics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Asia Conference on Informatics in Control, Automation and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAR.2009.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAR.2009.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并证明了路径曲线与小车运动关系的一个命题。在此基础上,给出了三次多项式作为过渡路径。这为轨迹设计提供了方便,同时也为小车允许最小转弯半径确定路径曲线参数提供了唯一性。在原型小车上进行的实验结果表明,小车以三次多项式作为过渡,平滑准确地跟踪给定路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Principle of Trajectory Planning for an Autonomous Vehicle
In this paper, a proposition about the relationship between path curve and cart motion is proposed and proved. Based on the proposition, the cubic polynomial is provided as a transition path. This is convenient for designing the trajectory and uniqueness for determining parameters of the path curves by the allowable minimal turn radius of cart. Experimental results, performed on the prototype cart, show that the cart tracks given paths with the cubic polynomial as a transition smoothly and accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信