用DFT和化学描述子方法建模pemfc催化合金

Alejandro Pérez-Mendoza, R. Ribadeneira
{"title":"用DFT和化学描述子方法建模pemfc催化合金","authors":"Alejandro Pérez-Mendoza, R. Ribadeneira","doi":"10.5772/INTECHOPEN.80922","DOIUrl":null,"url":null,"abstract":"Material properties and process modeling with density functional theory (DFT) is an accurate method to facilitate the study and the design of materials computationally for the development of different electrochemical technologies such as fuel cells, solar cells, and batteries, among others, mainly to achieve alternative ways for energy conversion and storage. Considering the relevance of DFT in the development of these alternative technologies for energy generation and storage, in this chapter, the application of DFT to study catalytic alloys and their reactivity processes to develop polymer membrane fuel cells (PEMFCs) is presented. In this sense, firstly, a brief review of the application of DFT to develop catalysts for PEMFCs and the relation with the concept of chemi- cal descriptors is presented. Secondly, the main chemical descriptors for this task are presented and discussed. Finally, a summary of the main findings of the modeling with DFT and chemical descriptors approach of catalytic alloys for PEMFCs is presented and analyzed.","PeriodicalId":211304,"journal":{"name":"Density Functional Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modeling with DFT and Chemical Descriptors Approach for the Development of Catalytic Alloys for PEMFCs\",\"authors\":\"Alejandro Pérez-Mendoza, R. Ribadeneira\",\"doi\":\"10.5772/INTECHOPEN.80922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Material properties and process modeling with density functional theory (DFT) is an accurate method to facilitate the study and the design of materials computationally for the development of different electrochemical technologies such as fuel cells, solar cells, and batteries, among others, mainly to achieve alternative ways for energy conversion and storage. Considering the relevance of DFT in the development of these alternative technologies for energy generation and storage, in this chapter, the application of DFT to study catalytic alloys and their reactivity processes to develop polymer membrane fuel cells (PEMFCs) is presented. In this sense, firstly, a brief review of the application of DFT to develop catalysts for PEMFCs and the relation with the concept of chemi- cal descriptors is presented. Secondly, the main chemical descriptors for this task are presented and discussed. Finally, a summary of the main findings of the modeling with DFT and chemical descriptors approach of catalytic alloys for PEMFCs is presented and analyzed.\",\"PeriodicalId\":211304,\"journal\":{\"name\":\"Density Functional Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Density Functional Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.80922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Density Functional Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

密度泛函理论(DFT)的材料特性和过程建模是一种精确的方法,可以促进不同电化学技术如燃料电池、太阳能电池和电池等材料的研究和设计,主要是为了实现能量转换和存储的替代方法。考虑到DFT在这些能源生成和存储替代技术发展中的相关性,本章介绍了DFT在研究催化合金及其反应性过程中的应用,以开发聚合物膜燃料电池(PEMFCs)。因此,本文首先简要介绍了DFT在pemfc催化剂开发中的应用及其与化学描述符概念的关系。其次,提出并讨论了该任务的主要化学描述符。最后,总结了用DFT和化学描述符方法对pemfc催化合金进行建模的主要发现并进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling with DFT and Chemical Descriptors Approach for the Development of Catalytic Alloys for PEMFCs
Material properties and process modeling with density functional theory (DFT) is an accurate method to facilitate the study and the design of materials computationally for the development of different electrochemical technologies such as fuel cells, solar cells, and batteries, among others, mainly to achieve alternative ways for energy conversion and storage. Considering the relevance of DFT in the development of these alternative technologies for energy generation and storage, in this chapter, the application of DFT to study catalytic alloys and their reactivity processes to develop polymer membrane fuel cells (PEMFCs) is presented. In this sense, firstly, a brief review of the application of DFT to develop catalysts for PEMFCs and the relation with the concept of chemi- cal descriptors is presented. Secondly, the main chemical descriptors for this task are presented and discussed. Finally, a summary of the main findings of the modeling with DFT and chemical descriptors approach of catalytic alloys for PEMFCs is presented and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信