一种基于收缩内存计算阵列的时空卷积预测早期激活加速器

Xiaofeng Chen, Ruiqi Guo, Zhiheng Yue, Yang Hu, Leibo Liu, Shaojun Wei, S. Yin
{"title":"一种基于收缩内存计算阵列的时空卷积预测早期激活加速器","authors":"Xiaofeng Chen, Ruiqi Guo, Zhiheng Yue, Yang Hu, Leibo Liu, Shaojun Wei, S. Yin","doi":"10.1109/AICAS57966.2023.10168581","DOIUrl":null,"url":null,"abstract":"Residual (2+1)-dimensional convolution neural network (R(2+1)D CNN) has achieved great success in video recognition due to the spatiotemporal convolution structure. However, R(2+1)D CNN incurs large energy and latency overhead because of intensive computation and frequent memory access. To solve the issues, we propose a digital SRAM-CIM based accelerator with two key features: (1) Systolic CIM array to efficiently match massive computations in regular architecture; (2) Digtal CIM circuit design with output sparsity predicition to avoid redundant computations. The proposed design is implemented in 28nm technology and achieves an energy efficiency of 21.87 TOPS/W at 200 MHz and 0.9 V supply voltage.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Systolic Computing-in-Memory Array based Accelerator with Predictive Early Activation for Spatiotemporal Convolutions\",\"authors\":\"Xiaofeng Chen, Ruiqi Guo, Zhiheng Yue, Yang Hu, Leibo Liu, Shaojun Wei, S. Yin\",\"doi\":\"10.1109/AICAS57966.2023.10168581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Residual (2+1)-dimensional convolution neural network (R(2+1)D CNN) has achieved great success in video recognition due to the spatiotemporal convolution structure. However, R(2+1)D CNN incurs large energy and latency overhead because of intensive computation and frequent memory access. To solve the issues, we propose a digital SRAM-CIM based accelerator with two key features: (1) Systolic CIM array to efficiently match massive computations in regular architecture; (2) Digtal CIM circuit design with output sparsity predicition to avoid redundant computations. The proposed design is implemented in 28nm technology and achieves an energy efficiency of 21.87 TOPS/W at 200 MHz and 0.9 V supply voltage.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

残差(2+1)维卷积神经网络(R(2+1)D CNN)由于其时空卷积结构,在视频识别中取得了巨大的成功。然而,R(2+1)D CNN由于需要大量的计算和频繁的内存访问,会产生较大的能量和延迟开销。为了解决这一问题,我们提出了一种基于SRAM-CIM的数字加速器,它具有两个关键特征:(1)收缩式CIM阵列,可以有效地匹配常规架构中的大量计算;(2)采用输出稀疏性预测的数字CIM电路设计,避免冗余计算。该设计采用28nm技术,在200mhz和0.9 V电源电压下实现了21.87 TOPS/W的能量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systolic Computing-in-Memory Array based Accelerator with Predictive Early Activation for Spatiotemporal Convolutions
Residual (2+1)-dimensional convolution neural network (R(2+1)D CNN) has achieved great success in video recognition due to the spatiotemporal convolution structure. However, R(2+1)D CNN incurs large energy and latency overhead because of intensive computation and frequent memory access. To solve the issues, we propose a digital SRAM-CIM based accelerator with two key features: (1) Systolic CIM array to efficiently match massive computations in regular architecture; (2) Digtal CIM circuit design with output sparsity predicition to avoid redundant computations. The proposed design is implemented in 28nm technology and achieves an energy efficiency of 21.87 TOPS/W at 200 MHz and 0.9 V supply voltage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信