边缘计算增强了中小企业环境下工业生态系统的隐私保护

Alexander Giehl, Peter Schneider, Maximilian Busch, F. Schnoes, Robin Kleinwort, M. Zaeh
{"title":"边缘计算增强了中小企业环境下工业生态系统的隐私保护","authors":"Alexander Giehl, Peter Schneider, Maximilian Busch, F. Schnoes, Robin Kleinwort, M. Zaeh","doi":"10.1109/CMI48017.2019.8962138","DOIUrl":null,"url":null,"abstract":"The ongoing transformation of the manufacturing landscape introduces new business opportunities for enterprises but also brings new challenges with it. Especially small- and medium-sized companies (SMEs) require an increasing effort to stay competitive. Data produced on the shop-floor can be harnessed to conduct analyses useful to plant operators, e.g., for optimization of production capabilities or for increasing plant security. Therefore, we propose a privacy-preserving edge-computing architecture to facilitate a platform for utilizing such applications. Our approach is motivated by requirements from SMEs in Germany, e.g., protection of intellectual property, and employs suitable privacy models. We demonstrate the viability of the proposed framework by evaluation of uses cases for machine chatter optimization and anomaly detection within plants.","PeriodicalId":142770,"journal":{"name":"2019 12th CMI Conference on Cybersecurity and Privacy (CMI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Edge-computing enhanced privacy protection for industrial ecosystems in the context of SMEs\",\"authors\":\"Alexander Giehl, Peter Schneider, Maximilian Busch, F. Schnoes, Robin Kleinwort, M. Zaeh\",\"doi\":\"10.1109/CMI48017.2019.8962138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ongoing transformation of the manufacturing landscape introduces new business opportunities for enterprises but also brings new challenges with it. Especially small- and medium-sized companies (SMEs) require an increasing effort to stay competitive. Data produced on the shop-floor can be harnessed to conduct analyses useful to plant operators, e.g., for optimization of production capabilities or for increasing plant security. Therefore, we propose a privacy-preserving edge-computing architecture to facilitate a platform for utilizing such applications. Our approach is motivated by requirements from SMEs in Germany, e.g., protection of intellectual property, and employs suitable privacy models. We demonstrate the viability of the proposed framework by evaluation of uses cases for machine chatter optimization and anomaly detection within plants.\",\"PeriodicalId\":142770,\"journal\":{\"name\":\"2019 12th CMI Conference on Cybersecurity and Privacy (CMI)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th CMI Conference on Cybersecurity and Privacy (CMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMI48017.2019.8962138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th CMI Conference on Cybersecurity and Privacy (CMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMI48017.2019.8962138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

制造业格局的持续转型为企业带来了新的商机,但也带来了新的挑战。特别是中小型企业(SMEs)需要越来越多的努力来保持竞争力。车间产生的数据可以用来进行对工厂操作员有用的分析,例如优化生产能力或提高工厂安全性。因此,我们提出了一种保护隐私的边缘计算架构,以促进利用这些应用程序的平台。我们的方法是由德国中小企业的需求驱动的,例如保护知识产权,并采用合适的隐私模型。我们通过评估机器颤振优化和工厂内异常检测的用例来证明所提出框架的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-computing enhanced privacy protection for industrial ecosystems in the context of SMEs
The ongoing transformation of the manufacturing landscape introduces new business opportunities for enterprises but also brings new challenges with it. Especially small- and medium-sized companies (SMEs) require an increasing effort to stay competitive. Data produced on the shop-floor can be harnessed to conduct analyses useful to plant operators, e.g., for optimization of production capabilities or for increasing plant security. Therefore, we propose a privacy-preserving edge-computing architecture to facilitate a platform for utilizing such applications. Our approach is motivated by requirements from SMEs in Germany, e.g., protection of intellectual property, and employs suitable privacy models. We demonstrate the viability of the proposed framework by evaluation of uses cases for machine chatter optimization and anomaly detection within plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信