连接主义学习马拉地语的方法

S. Kolhe, B. Pawar
{"title":"连接主义学习马拉地语的方法","authors":"S. Kolhe, B. Pawar","doi":"10.1109/ICETET.2008.15","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated the inductive inference of complex grammar of subset of Marathi (Indian) language and results are reported. We have investigated Elman recurrent networks (ERNs), Jordon recurrent networks (JRNs), time lagged recurrent networks (TLRNs) and recurrent neural networks (RNNs). In this empirical study, we consider the task of classifying Marathi language sentences as grammatical or ungrammatical as well as modeled the problem as a prediction problem. We have also analyzed the operation of the networks by investing rule approximation.","PeriodicalId":269929,"journal":{"name":"2008 First International Conference on Emerging Trends in Engineering and Technology","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Connectionist Approach to Learn Marathi Language\",\"authors\":\"S. Kolhe, B. Pawar\",\"doi\":\"10.1109/ICETET.2008.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have investigated the inductive inference of complex grammar of subset of Marathi (Indian) language and results are reported. We have investigated Elman recurrent networks (ERNs), Jordon recurrent networks (JRNs), time lagged recurrent networks (TLRNs) and recurrent neural networks (RNNs). In this empirical study, we consider the task of classifying Marathi language sentences as grammatical or ungrammatical as well as modeled the problem as a prediction problem. We have also analyzed the operation of the networks by investing rule approximation.\",\"PeriodicalId\":269929,\"journal\":{\"name\":\"2008 First International Conference on Emerging Trends in Engineering and Technology\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First International Conference on Emerging Trends in Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETET.2008.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Emerging Trends in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2008.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对马拉地语(印度语)子集复杂语法的归纳推理进行了研究,并给出了一些结果。我们研究了Elman递归网络(ERNs)、Jordon递归网络(JRNs)、时间滞后递归网络(TLRNs)和递归神经网络(rnn)。在这项实证研究中,我们考虑将马拉地语句子分类为语法或非语法的任务,并将该问题建模为预测问题。我们还用投资规则近似法分析了网络的运行情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Connectionist Approach to Learn Marathi Language
In this paper, we have investigated the inductive inference of complex grammar of subset of Marathi (Indian) language and results are reported. We have investigated Elman recurrent networks (ERNs), Jordon recurrent networks (JRNs), time lagged recurrent networks (TLRNs) and recurrent neural networks (RNNs). In this empirical study, we consider the task of classifying Marathi language sentences as grammatical or ungrammatical as well as modeled the problem as a prediction problem. We have also analyzed the operation of the networks by investing rule approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信