基于反向预测加权邻居数据关联的多目标跟踪

Zhongzhi Li, Xue-gang Wang
{"title":"基于反向预测加权邻居数据关联的多目标跟踪","authors":"Zhongzhi Li, Xue-gang Wang","doi":"10.4156/JCIT.VOL5.ISSUE8.21","DOIUrl":null,"url":null,"abstract":"Abstract A new data association method is presented for multiple target tracking. The proposed method is formulated using reverse prediction weighted neighbor to calculate the probability of candidate measurements from targets. The purpose of the proposed method is to eliminate the need to acquire prior knowledge such as detection probability and clutter density. The probability between targets and measurements are reflected in the reverse prediction residual norm.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiple Target Tracking Using Reverse Prediction Weighted Neighbor Data Association\",\"authors\":\"Zhongzhi Li, Xue-gang Wang\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE8.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new data association method is presented for multiple target tracking. The proposed method is formulated using reverse prediction weighted neighbor to calculate the probability of candidate measurements from targets. The purpose of the proposed method is to eliminate the need to acquire prior knowledge such as detection probability and clutter density. The probability between targets and measurements are reflected in the reverse prediction residual norm.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要提出了一种新的多目标跟踪数据关联方法。该方法采用反向预测加权邻域法计算候选测量值离目标的概率。该方法的目的是消除对检测概率和杂波密度等先验知识的获取需求。目标与测量值之间的概率反映在反向预测残差模中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Target Tracking Using Reverse Prediction Weighted Neighbor Data Association
Abstract A new data association method is presented for multiple target tracking. The proposed method is formulated using reverse prediction weighted neighbor to calculate the probability of candidate measurements from targets. The purpose of the proposed method is to eliminate the need to acquire prior knowledge such as detection probability and clutter density. The probability between targets and measurements are reflected in the reverse prediction residual norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信