基于增强鲸鱼优化算法的支持向量机参数优化

Y. Wenzhuo, Liu Shuo
{"title":"基于增强鲸鱼优化算法的支持向量机参数优化","authors":"Y. Wenzhuo, Liu Shuo","doi":"10.1109/epce58798.2023.00034","DOIUrl":null,"url":null,"abstract":"To enhance the parameters of the kernel function in the conventional support vector machine (SVM) - σ and penalty factor C - an advanced whale optimization algorithm (IWOA) is introduced within this article to optimize the SVM parameter model (IWOA-SVM). The IWOA algorithm is employed to augment the optimization capability of the original whale optimization algorithm, focusing on three key aspects: Firstly, the chaotic circle mapping technique is utilized to produce the initial positions of the initial whale population, which serves as a foundation for population diversity during the algorithm's global search process; Secondly, an adaptable weight parameter is integrated into the spiral ascent phase of the whale, which reinforces the local exploration capability of IWOA, accelerates its rate of convergence and augments the precision of the algorithm; Lastly, the Cauchy mutation perturbation is employed to alter the current optimal solution, thereby averting the algorithm from being confined to a local optima state. The optimization of parameters for the SVM kernel function is achieved through the Improved Whale Optimization Algorithm, by tuning the kernel function's parameters such as σ and penalty factor C, and then verified on the UCI dataset. In comparison to conventional SVM, Particle Swarm Optimization SVM, Genetic Algorithm Optimization SVM, and Original Whale Algorithm Optimization SVM, IWOA-SVM demonstrates the highest classification accuracy, indicating its effectiveness as an SVM parameter optimization algorithm.","PeriodicalId":355442,"journal":{"name":"2023 2nd Asia Conference on Electrical, Power and Computer Engineering (EPCE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Parameters of Support Vector Machines Using an Enhanced Whale Optimization Algorithm\",\"authors\":\"Y. Wenzhuo, Liu Shuo\",\"doi\":\"10.1109/epce58798.2023.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance the parameters of the kernel function in the conventional support vector machine (SVM) - σ and penalty factor C - an advanced whale optimization algorithm (IWOA) is introduced within this article to optimize the SVM parameter model (IWOA-SVM). The IWOA algorithm is employed to augment the optimization capability of the original whale optimization algorithm, focusing on three key aspects: Firstly, the chaotic circle mapping technique is utilized to produce the initial positions of the initial whale population, which serves as a foundation for population diversity during the algorithm's global search process; Secondly, an adaptable weight parameter is integrated into the spiral ascent phase of the whale, which reinforces the local exploration capability of IWOA, accelerates its rate of convergence and augments the precision of the algorithm; Lastly, the Cauchy mutation perturbation is employed to alter the current optimal solution, thereby averting the algorithm from being confined to a local optima state. The optimization of parameters for the SVM kernel function is achieved through the Improved Whale Optimization Algorithm, by tuning the kernel function's parameters such as σ and penalty factor C, and then verified on the UCI dataset. In comparison to conventional SVM, Particle Swarm Optimization SVM, Genetic Algorithm Optimization SVM, and Original Whale Algorithm Optimization SVM, IWOA-SVM demonstrates the highest classification accuracy, indicating its effectiveness as an SVM parameter optimization algorithm.\",\"PeriodicalId\":355442,\"journal\":{\"name\":\"2023 2nd Asia Conference on Electrical, Power and Computer Engineering (EPCE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd Asia Conference on Electrical, Power and Computer Engineering (EPCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/epce58798.2023.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd Asia Conference on Electrical, Power and Computer Engineering (EPCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/epce58798.2023.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了增强传统支持向量机(SVM)核函数参数σ和惩罚因子C,本文引入了一种先进的鲸鱼优化算法(IWOA-SVM)来优化支持向量机参数模型(IWOA-SVM)。利用IWOA算法增强了原鲸鱼优化算法的优化能力,主要集中在三个关键方面:首先,利用混沌圆映射技术生成初始鲸鱼种群的初始位置,为算法全局搜索过程中种群多样性奠定基础;其次,在鲸鱼的螺旋上升阶段引入自适应权值参数,增强了IWOA的局部搜索能力,加快了算法的收敛速度,提高了算法的精度;最后,利用柯西突变摄动来改变当前最优解,从而避免算法局限于局部最优状态。通过优化核函数参数σ和惩罚因子C,采用改进的鲸鱼优化算法对SVM核函数参数进行优化,并在UCI数据集上进行验证。与传统支持向量机、粒子群优化支持向量机、遗传算法优化支持向量机和原始鲸鱼算法优化支持向量机相比,IWOA-SVM的分类准确率最高,表明了其作为支持向量机参数优化算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Parameters of Support Vector Machines Using an Enhanced Whale Optimization Algorithm
To enhance the parameters of the kernel function in the conventional support vector machine (SVM) - σ and penalty factor C - an advanced whale optimization algorithm (IWOA) is introduced within this article to optimize the SVM parameter model (IWOA-SVM). The IWOA algorithm is employed to augment the optimization capability of the original whale optimization algorithm, focusing on three key aspects: Firstly, the chaotic circle mapping technique is utilized to produce the initial positions of the initial whale population, which serves as a foundation for population diversity during the algorithm's global search process; Secondly, an adaptable weight parameter is integrated into the spiral ascent phase of the whale, which reinforces the local exploration capability of IWOA, accelerates its rate of convergence and augments the precision of the algorithm; Lastly, the Cauchy mutation perturbation is employed to alter the current optimal solution, thereby averting the algorithm from being confined to a local optima state. The optimization of parameters for the SVM kernel function is achieved through the Improved Whale Optimization Algorithm, by tuning the kernel function's parameters such as σ and penalty factor C, and then verified on the UCI dataset. In comparison to conventional SVM, Particle Swarm Optimization SVM, Genetic Algorithm Optimization SVM, and Original Whale Algorithm Optimization SVM, IWOA-SVM demonstrates the highest classification accuracy, indicating its effectiveness as an SVM parameter optimization algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信