面向物联网设备的轻量级可重构安全架构

Armin Babaei
{"title":"面向物联网设备的轻量级可重构安全架构","authors":"Armin Babaei","doi":"10.1109/ACSOS-C52956.2021.00082","DOIUrl":null,"url":null,"abstract":"Assuring Cybersecurity for the Internet of things (IoT) remains a significant challenge. Most IoT devices have minimal computational power and should be secured with lightweight security techniques (optimized computation and energy tradeoff). Furthermore, IoT devices are mainly designed to have long lifetimes (e.g., 10–15 years), forcing the designers to open the system for possible future updates. Here, we developed a lightweight and reconfigurable security architecture for IoT devices. Our research goal is to create a simple authentication protocol based on physical unclonable function (PUF) for FPGA-based IoT devices. The main challenge toward realization of this protocol is to make it make it resilient against machine learning attacks and it shall not use cryptography primitives.","PeriodicalId":268224,"journal":{"name":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lightweight and Reconfigurable Security Architecture for Internet of Things devices\",\"authors\":\"Armin Babaei\",\"doi\":\"10.1109/ACSOS-C52956.2021.00082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuring Cybersecurity for the Internet of things (IoT) remains a significant challenge. Most IoT devices have minimal computational power and should be secured with lightweight security techniques (optimized computation and energy tradeoff). Furthermore, IoT devices are mainly designed to have long lifetimes (e.g., 10–15 years), forcing the designers to open the system for possible future updates. Here, we developed a lightweight and reconfigurable security architecture for IoT devices. Our research goal is to create a simple authentication protocol based on physical unclonable function (PUF) for FPGA-based IoT devices. The main challenge toward realization of this protocol is to make it make it resilient against machine learning attacks and it shall not use cryptography primitives.\",\"PeriodicalId\":268224,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSOS-C52956.2021.00082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSOS-C52956.2021.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

确保物联网(IoT)的网络安全仍然是一项重大挑战。大多数物联网设备具有最小的计算能力,应该使用轻量级安全技术(优化计算和能源权衡)来保护。此外,物联网设备主要设计为具有较长的使用寿命(例如10-15年),这迫使设计人员打开系统以备将来可能的更新。在这里,我们为物联网设备开发了一个轻量级和可重构的安全架构。我们的研究目标是为基于fpga的物联网设备创建一个基于物理不可克隆功能(PUF)的简单认证协议。实现该协议的主要挑战是使其具有抵御机器学习攻击的弹性,并且不应使用加密原语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight and Reconfigurable Security Architecture for Internet of Things devices
Assuring Cybersecurity for the Internet of things (IoT) remains a significant challenge. Most IoT devices have minimal computational power and should be secured with lightweight security techniques (optimized computation and energy tradeoff). Furthermore, IoT devices are mainly designed to have long lifetimes (e.g., 10–15 years), forcing the designers to open the system for possible future updates. Here, we developed a lightweight and reconfigurable security architecture for IoT devices. Our research goal is to create a simple authentication protocol based on physical unclonable function (PUF) for FPGA-based IoT devices. The main challenge toward realization of this protocol is to make it make it resilient against machine learning attacks and it shall not use cryptography primitives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信