一种新的在线事件检测和跟踪方法:来自法国股票市场的经验证据

Mohamed Saidane, C. Lavergne
{"title":"一种新的在线事件检测和跟踪方法:来自法国股票市场的经验证据","authors":"Mohamed Saidane, C. Lavergne","doi":"10.1504/AJFA.2008.019877","DOIUrl":null,"url":null,"abstract":"In this article we propose a new approach in event studies based on a hidden Markov chain combined with a classical event study model. The number of states informs us about the number of significant events affecting the related market, and the identification of the hidden states determines exactly the delimiters of the event period. Studying each state parameters allows us to examine the events' effect on the related market and to compare results to traditional event analysis. Extensive Monte Carlo simulations and preliminary examination of real data in the French stock market show promising results.","PeriodicalId":379725,"journal":{"name":"American J. of Finance and Accounting","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new online method for event detection and tracking: empirical evidence from the French stock market\",\"authors\":\"Mohamed Saidane, C. Lavergne\",\"doi\":\"10.1504/AJFA.2008.019877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we propose a new approach in event studies based on a hidden Markov chain combined with a classical event study model. The number of states informs us about the number of significant events affecting the related market, and the identification of the hidden states determines exactly the delimiters of the event period. Studying each state parameters allows us to examine the events' effect on the related market and to compare results to traditional event analysis. Extensive Monte Carlo simulations and preliminary examination of real data in the French stock market show promising results.\",\"PeriodicalId\":379725,\"journal\":{\"name\":\"American J. of Finance and Accounting\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American J. of Finance and Accounting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/AJFA.2008.019877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American J. of Finance and Accounting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/AJFA.2008.019877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于隐马尔可夫链与经典事件研究模型相结合的事件研究新方法。状态的数量告诉我们影响相关市场的重大事件的数量,隐藏状态的识别准确地决定了事件周期的分隔符。研究每个状态参数使我们能够检查事件对相关市场的影响,并将结果与传统的事件分析进行比较。广泛的蒙特卡罗模拟和对法国股票市场真实数据的初步检查显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new online method for event detection and tracking: empirical evidence from the French stock market
In this article we propose a new approach in event studies based on a hidden Markov chain combined with a classical event study model. The number of states informs us about the number of significant events affecting the related market, and the identification of the hidden states determines exactly the delimiters of the event period. Studying each state parameters allows us to examine the events' effect on the related market and to compare results to traditional event analysis. Extensive Monte Carlo simulations and preliminary examination of real data in the French stock market show promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信