L. Jaffke, O-joung Kwon, Torstein J. F. Strømme, J. A. Telle
{"title":"有界中宽图上的广义距离支配问题及其复杂性","authors":"L. Jaffke, O-joung Kwon, Torstein J. F. Strømme, J. A. Telle","doi":"10.4230/LIPIcs.IPEC.2018.6","DOIUrl":null,"url":null,"abstract":"We generalize the family of $(\\sigma, \\rho)$-problems and locally checkable vertex partition problems to their distance versions, which naturally captures well-known problems such as distance-$r$ dominating set and distance-$r$ independent set. We show that these distance problems are XP parameterized by the structural parameter mim-width, and hence polynomial on graph classes where mim-width is bounded and quickly computable, such as $k$-trapezoid graphs, Dilworth $k$-graphs, (circular) permutation graphs, interval graphs and their complements, convex graphs and their complements, $k$-polygon graphs, circular arc graphs, complements of $d$-degenerate graphs, and $H$-graphs if given an $H$-representation. To supplement these findings, we show that many classes of (distance) $(\\sigma, \\rho)$-problems are W[1]-hard parameterized by mim-width + solution size.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Generalized distance domination problems and their complexity on graphs of bounded mim-width\",\"authors\":\"L. Jaffke, O-joung Kwon, Torstein J. F. Strømme, J. A. Telle\",\"doi\":\"10.4230/LIPIcs.IPEC.2018.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the family of $(\\\\sigma, \\\\rho)$-problems and locally checkable vertex partition problems to their distance versions, which naturally captures well-known problems such as distance-$r$ dominating set and distance-$r$ independent set. We show that these distance problems are XP parameterized by the structural parameter mim-width, and hence polynomial on graph classes where mim-width is bounded and quickly computable, such as $k$-trapezoid graphs, Dilworth $k$-graphs, (circular) permutation graphs, interval graphs and their complements, convex graphs and their complements, $k$-polygon graphs, circular arc graphs, complements of $d$-degenerate graphs, and $H$-graphs if given an $H$-representation. To supplement these findings, we show that many classes of (distance) $(\\\\sigma, \\\\rho)$-problems are W[1]-hard parameterized by mim-width + solution size.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.IPEC.2018.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2018.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized distance domination problems and their complexity on graphs of bounded mim-width
We generalize the family of $(\sigma, \rho)$-problems and locally checkable vertex partition problems to their distance versions, which naturally captures well-known problems such as distance-$r$ dominating set and distance-$r$ independent set. We show that these distance problems are XP parameterized by the structural parameter mim-width, and hence polynomial on graph classes where mim-width is bounded and quickly computable, such as $k$-trapezoid graphs, Dilworth $k$-graphs, (circular) permutation graphs, interval graphs and their complements, convex graphs and their complements, $k$-polygon graphs, circular arc graphs, complements of $d$-degenerate graphs, and $H$-graphs if given an $H$-representation. To supplement these findings, we show that many classes of (distance) $(\sigma, \rho)$-problems are W[1]-hard parameterized by mim-width + solution size.