利用域外数据转录多类型媒体档案

Peter Bell, M. Gales, P. Lanchantin, Xunying Liu, Yanhua Long, Steve Renals, P. Swietojanski, P. Woodland
{"title":"利用域外数据转录多类型媒体档案","authors":"Peter Bell, M. Gales, P. Lanchantin, Xunying Liu, Yanhua Long, Steve Renals, P. Swietojanski, P. Woodland","doi":"10.1109/SLT.2012.6424244","DOIUrl":null,"url":null,"abstract":"We describe our work on developing a speech recognition system for multi-genre media archives. The high diversity of the data makes this a challenging recognition task, which may benefit from systems trained on a combination of in-domain and out-of-domain data. Working with tandem HMMs, we present Multi-level Adaptive Networks (MLAN), a novel technique for incorporating information from out-of-domain posterior features using deep neural networks. We show that it provides a substantial reduction in WER over other systems, with relative WER reductions of 15% over a PLP baseline, 9% over in-domain tandem features and 8% over the best out-of-domain tandem features.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Transcription of multi-genre media archives using out-of-domain data\",\"authors\":\"Peter Bell, M. Gales, P. Lanchantin, Xunying Liu, Yanhua Long, Steve Renals, P. Swietojanski, P. Woodland\",\"doi\":\"10.1109/SLT.2012.6424244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our work on developing a speech recognition system for multi-genre media archives. The high diversity of the data makes this a challenging recognition task, which may benefit from systems trained on a combination of in-domain and out-of-domain data. Working with tandem HMMs, we present Multi-level Adaptive Networks (MLAN), a novel technique for incorporating information from out-of-domain posterior features using deep neural networks. We show that it provides a substantial reduction in WER over other systems, with relative WER reductions of 15% over a PLP baseline, 9% over in-domain tandem features and 8% over the best out-of-domain tandem features.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

我们描述了我们在开发多类型媒体档案语音识别系统方面的工作。数据的高度多样性使这成为一项具有挑战性的识别任务,这可能受益于基于域内和域外数据组合训练的系统。与串联hmm合作,我们提出了多层次自适应网络(MLAN),这是一种利用深度神经网络整合域外后验特征信息的新技术。我们表明,与其他系统相比,它提供了大幅降低的WER,与PLP基线相比,相对降低了15%的WER,比域内串联特性降低了9%,比最佳域外串联特性降低了8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcription of multi-genre media archives using out-of-domain data
We describe our work on developing a speech recognition system for multi-genre media archives. The high diversity of the data makes this a challenging recognition task, which may benefit from systems trained on a combination of in-domain and out-of-domain data. Working with tandem HMMs, we present Multi-level Adaptive Networks (MLAN), a novel technique for incorporating information from out-of-domain posterior features using deep neural networks. We show that it provides a substantial reduction in WER over other systems, with relative WER reductions of 15% over a PLP baseline, 9% over in-domain tandem features and 8% over the best out-of-domain tandem features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信