声学成像中基于稀疏性先验的变分贝叶斯近似方法

Ning Chu, A. Mohammad-Djafari, N. Gac, J. Picheral
{"title":"声学成像中基于稀疏性先验的变分贝叶斯近似方法","authors":"Ning Chu, A. Mohammad-Djafari, N. Gac, J. Picheral","doi":"10.1109/WIO.2014.6933297","DOIUrl":null,"url":null,"abstract":"Acoustic imaging is an advanced technique for acoustic source localization and power reconstruction from limited noisy measurements at microphone sensors. To solve this ill-posed inverse problem, the Bayesian inference methods using proper prior knowledge have been widely investigated. In this paper, we propose to use a hierarchical Variational Bayesian Approximation for the robust acoustic imaging. And we explore the Student's-t priors with heavy tails to enforce source sparsity and non-Gaussian noises, so that we can achieve the super spatial resolution and wide dynamic range of source powers. In addition, proposed approach is validated by simulations and real data from wind tunnel in automobile industry.","PeriodicalId":183646,"journal":{"name":"2014 13th Workshop on Information Optics (WIO)","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A variational Bayesian approximation approach via a sparsity enforcing prior in acoustic imaging\",\"authors\":\"Ning Chu, A. Mohammad-Djafari, N. Gac, J. Picheral\",\"doi\":\"10.1109/WIO.2014.6933297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic imaging is an advanced technique for acoustic source localization and power reconstruction from limited noisy measurements at microphone sensors. To solve this ill-posed inverse problem, the Bayesian inference methods using proper prior knowledge have been widely investigated. In this paper, we propose to use a hierarchical Variational Bayesian Approximation for the robust acoustic imaging. And we explore the Student's-t priors with heavy tails to enforce source sparsity and non-Gaussian noises, so that we can achieve the super spatial resolution and wide dynamic range of source powers. In addition, proposed approach is validated by simulations and real data from wind tunnel in automobile industry.\",\"PeriodicalId\":183646,\"journal\":{\"name\":\"2014 13th Workshop on Information Optics (WIO)\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 13th Workshop on Information Optics (WIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIO.2014.6933297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 13th Workshop on Information Optics (WIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIO.2014.6933297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

声学成像是一种先进的声源定位和功率重建技术,可从麦克风传感器的有限噪声测量中获得。为了解决这一病态逆问题,利用适当先验知识的贝叶斯推理方法得到了广泛的研究。本文提出了一种基于层次变分贝叶斯近似的鲁棒声成像方法。并利用带重尾的Student’s-t先验来增强源稀疏性和非高斯噪声,从而实现源功率的超空间分辨率和宽动态范围。通过仿真和汽车风洞实测数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variational Bayesian approximation approach via a sparsity enforcing prior in acoustic imaging
Acoustic imaging is an advanced technique for acoustic source localization and power reconstruction from limited noisy measurements at microphone sensors. To solve this ill-posed inverse problem, the Bayesian inference methods using proper prior knowledge have been widely investigated. In this paper, we propose to use a hierarchical Variational Bayesian Approximation for the robust acoustic imaging. And we explore the Student's-t priors with heavy tails to enforce source sparsity and non-Gaussian noises, so that we can achieve the super spatial resolution and wide dynamic range of source powers. In addition, proposed approach is validated by simulations and real data from wind tunnel in automobile industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信