鲁棒性保证商:展示人工智能性能和机器学习安全的上下文问题

Samuel Lefcourt, Nathaniel G. Gordon, Hanting Wong, Gregory Falco
{"title":"鲁棒性保证商:展示人工智能性能和机器学习安全的上下文问题","authors":"Samuel Lefcourt, Nathaniel G. Gordon, Hanting Wong, Gregory Falco","doi":"10.1109/ICAA52185.2022.00012","DOIUrl":null,"url":null,"abstract":"We present a novel approach to developing robust AI in light of context-varying situations. This methodology harnesses a suite of indicators to establish a Robustness Assurance Quotient (RAQ) tailored to address environmentally noisy data while maintaining parity with current standards, namely the Fréchet Inception Distance (FID) metric. While the FID metric successfully indicates the closeness of highly structured data, it is less successful measuring closeness of inherently noisy data. A score for ascertaining the closeness between Generative Adversarial Network (GAN)-simulated, inherently noisy radiofrequnecy data and original GAN signals are proposed by focusing on the subject and context of the image. The RAQ demonstrably improved our GAN’s generated content similarity to original waterfall images of radiofrequency signal. We believe our Robustness Assurance Quotient can have a profound impact on improving the robustness of various AI models, in diverse application domains ultimately reducing the negative impact of noisy data.","PeriodicalId":206047,"journal":{"name":"2022 IEEE International Conference on Assured Autonomy (ICAA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness Assurance Quotient: Demonstrating Context Matters for AI Performance and ML Security\",\"authors\":\"Samuel Lefcourt, Nathaniel G. Gordon, Hanting Wong, Gregory Falco\",\"doi\":\"10.1109/ICAA52185.2022.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to developing robust AI in light of context-varying situations. This methodology harnesses a suite of indicators to establish a Robustness Assurance Quotient (RAQ) tailored to address environmentally noisy data while maintaining parity with current standards, namely the Fréchet Inception Distance (FID) metric. While the FID metric successfully indicates the closeness of highly structured data, it is less successful measuring closeness of inherently noisy data. A score for ascertaining the closeness between Generative Adversarial Network (GAN)-simulated, inherently noisy radiofrequnecy data and original GAN signals are proposed by focusing on the subject and context of the image. The RAQ demonstrably improved our GAN’s generated content similarity to original waterfall images of radiofrequency signal. We believe our Robustness Assurance Quotient can have a profound impact on improving the robustness of various AI models, in diverse application domains ultimately reducing the negative impact of noisy data.\",\"PeriodicalId\":206047,\"journal\":{\"name\":\"2022 IEEE International Conference on Assured Autonomy (ICAA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Assured Autonomy (ICAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAA52185.2022.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Assured Autonomy (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA52185.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的方法来开发健壮的人工智能在不同的情况下。该方法利用一系列指标来建立鲁棒性保证商数(RAQ),以解决环境噪声数据,同时保持与当前标准的一致性,即fr起始距离(FID)度量。虽然FID度量成功地表明高度结构化数据的紧密性,但它不太成功地测量固有噪声数据的紧密性。通过关注图像的主题和上下文,提出了一个用于确定生成对抗网络(GAN)模拟的固有噪声射频数据与原始GAN信号之间的密切程度的分数。RAQ显著提高了GAN生成的内容与原始射频信号瀑布图像的相似度。我们相信我们的鲁棒性保证商可以对提高各种人工智能模型的鲁棒性产生深远的影响,在不同的应用领域最终减少噪声数据的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness Assurance Quotient: Demonstrating Context Matters for AI Performance and ML Security
We present a novel approach to developing robust AI in light of context-varying situations. This methodology harnesses a suite of indicators to establish a Robustness Assurance Quotient (RAQ) tailored to address environmentally noisy data while maintaining parity with current standards, namely the Fréchet Inception Distance (FID) metric. While the FID metric successfully indicates the closeness of highly structured data, it is less successful measuring closeness of inherently noisy data. A score for ascertaining the closeness between Generative Adversarial Network (GAN)-simulated, inherently noisy radiofrequnecy data and original GAN signals are proposed by focusing on the subject and context of the image. The RAQ demonstrably improved our GAN’s generated content similarity to original waterfall images of radiofrequency signal. We believe our Robustness Assurance Quotient can have a profound impact on improving the robustness of various AI models, in diverse application domains ultimately reducing the negative impact of noisy data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信