在资源有限的边缘设备上基于人类情感的实时记忆和计算管理

Yijie Wei, Zhiwei Zhong, Jie Gu
{"title":"在资源有限的边缘设备上基于人类情感的实时记忆和计算管理","authors":"Yijie Wei, Zhiwei Zhong, Jie Gu","doi":"10.1145/3489517.3530490","DOIUrl":null,"url":null,"abstract":"Emotional AI or Affective Computing has been projected to grow rapidly in the upcoming years. Despite many existing developments in the application space, there has been a lack of hardware-level exploitation of the user's emotions. In this paper, we propose a deep collaboration between user's affects and the hardware system management on resource-limited edge devices. Based on classification results from efficient affect classifiers on smartphone devices, novel real-time management schemes for memory, and video processing are proposed to improve the energy efficiency of mobile devices. Case studies on H.264 / AVC video playback and Android smartphone usages are provided showing significant power saving of up to 23% and reduction of memory loading of up to 17% using the proposed affect adaptive architecture and system management schemes.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human emotion based real-time memory and computation management on resource-limited edge devices\",\"authors\":\"Yijie Wei, Zhiwei Zhong, Jie Gu\",\"doi\":\"10.1145/3489517.3530490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotional AI or Affective Computing has been projected to grow rapidly in the upcoming years. Despite many existing developments in the application space, there has been a lack of hardware-level exploitation of the user's emotions. In this paper, we propose a deep collaboration between user's affects and the hardware system management on resource-limited edge devices. Based on classification results from efficient affect classifiers on smartphone devices, novel real-time management schemes for memory, and video processing are proposed to improve the energy efficiency of mobile devices. Case studies on H.264 / AVC video playback and Android smartphone usages are provided showing significant power saving of up to 23% and reduction of memory loading of up to 17% using the proposed affect adaptive architecture and system management schemes.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感人工智能或情感计算预计将在未来几年迅速增长。尽管在应用程序领域有许多现有的发展,但仍然缺乏对用户情感的硬件级开发。本文提出在资源有限的边缘设备上,用户影响与硬件系统管理之间的深度协同。基于智能手机上高效影响分类器的分类结果,提出了新的内存和视频处理实时管理方案,以提高移动设备的能源效率。H.264 / AVC视频播放和Android智能手机使用的案例研究表明,使用所提出的影响自适应架构和系统管理方案,可显著节省高达23%的功耗,减少高达17%的内存负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human emotion based real-time memory and computation management on resource-limited edge devices
Emotional AI or Affective Computing has been projected to grow rapidly in the upcoming years. Despite many existing developments in the application space, there has been a lack of hardware-level exploitation of the user's emotions. In this paper, we propose a deep collaboration between user's affects and the hardware system management on resource-limited edge devices. Based on classification results from efficient affect classifiers on smartphone devices, novel real-time management schemes for memory, and video processing are proposed to improve the energy efficiency of mobile devices. Case studies on H.264 / AVC video playback and Android smartphone usages are provided showing significant power saving of up to 23% and reduction of memory loading of up to 17% using the proposed affect adaptive architecture and system management schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信