具有主题信息的文本相似度深度变化自动编码器

Zheng Gong, Yujiao Fu, Xiangdong Su, Heng Xu
{"title":"具有主题信息的文本相似度深度变化自动编码器","authors":"Zheng Gong, Yujiao Fu, Xiangdong Su, Heng Xu","doi":"10.1109/ICCIA.2018.00058","DOIUrl":null,"url":null,"abstract":"Representation learning is an essential process in the text similarity task. The methods based on neural variational inference first learn the semantic representation of the texts, then measure the similarity of these texts by calculating the cosine similarity of their representations. However, it is not generally desirable that using the neural network simply to learn semantic representation as it cannot capture the rich semantic information completely. Considering that the similarity of context information reflects the similarity of text pairs in most cases, we integrate the topic information into a stacked variational autoencoder in process of text representation learning. The improved text representations are used in text similarity calculation. Experiment result shows that our approach obtains the state-of-art performance.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Variation Autoencoder with Topic Information for Text Similarity\",\"authors\":\"Zheng Gong, Yujiao Fu, Xiangdong Su, Heng Xu\",\"doi\":\"10.1109/ICCIA.2018.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation learning is an essential process in the text similarity task. The methods based on neural variational inference first learn the semantic representation of the texts, then measure the similarity of these texts by calculating the cosine similarity of their representations. However, it is not generally desirable that using the neural network simply to learn semantic representation as it cannot capture the rich semantic information completely. Considering that the similarity of context information reflects the similarity of text pairs in most cases, we integrate the topic information into a stacked variational autoencoder in process of text representation learning. The improved text representations are used in text similarity calculation. Experiment result shows that our approach obtains the state-of-art performance.\",\"PeriodicalId\":297098,\"journal\":{\"name\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIA.2018.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA.2018.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表征学习是文本相似任务中的一个重要过程。基于神经变分推理的方法首先学习文本的语义表示,然后通过计算文本表示的余弦相似度来度量文本的相似度。然而,由于神经网络不能完全捕获丰富的语义信息,因此通常不希望简单地使用神经网络来学习语义表示。考虑到上下文信息的相似度在大多数情况下反映了文本对的相似度,在文本表示学习过程中,我们将主题信息集成到一个堆叠变分自编码器中。将改进后的文本表示用于文本相似度计算。实验结果表明,该方法获得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Variation Autoencoder with Topic Information for Text Similarity
Representation learning is an essential process in the text similarity task. The methods based on neural variational inference first learn the semantic representation of the texts, then measure the similarity of these texts by calculating the cosine similarity of their representations. However, it is not generally desirable that using the neural network simply to learn semantic representation as it cannot capture the rich semantic information completely. Considering that the similarity of context information reflects the similarity of text pairs in most cases, we integrate the topic information into a stacked variational autoencoder in process of text representation learning. The improved text representations are used in text similarity calculation. Experiment result shows that our approach obtains the state-of-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信