{"title":"多相机系统中相对姿态的高效计算","authors":"L. Kneip, Hongdong Li","doi":"10.1109/CVPR.2014.64","DOIUrl":null,"url":null,"abstract":"We present a novel solution to compute the relative pose of a generalized camera. Existing solutions are either not general, have too high computational complexity, or require too many correspondences, which impedes an efficient or accurate usage within Ransac schemes. We factorize the problem as a low-dimensional, iterative optimization over relative rotation only, directly derived from well-known epipolar constraints. Common generalized cameras often consist of camera clusters, and give rise to omni-directional landmark observations. We prove that our iterative scheme performs well in such practically relevant situations, eventually resulting in computational efficiency similar to linear solvers, and accuracy close to bundle adjustment, while using less correspondences. Experiments on both virtual and real multi-camera systems prove superior overall performance for robust, real-time multi-camera motion-estimation.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Efficient Computation of Relative Pose for Multi-camera Systems\",\"authors\":\"L. Kneip, Hongdong Li\",\"doi\":\"10.1109/CVPR.2014.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel solution to compute the relative pose of a generalized camera. Existing solutions are either not general, have too high computational complexity, or require too many correspondences, which impedes an efficient or accurate usage within Ransac schemes. We factorize the problem as a low-dimensional, iterative optimization over relative rotation only, directly derived from well-known epipolar constraints. Common generalized cameras often consist of camera clusters, and give rise to omni-directional landmark observations. We prove that our iterative scheme performs well in such practically relevant situations, eventually resulting in computational efficiency similar to linear solvers, and accuracy close to bundle adjustment, while using less correspondences. Experiments on both virtual and real multi-camera systems prove superior overall performance for robust, real-time multi-camera motion-estimation.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Computation of Relative Pose for Multi-camera Systems
We present a novel solution to compute the relative pose of a generalized camera. Existing solutions are either not general, have too high computational complexity, or require too many correspondences, which impedes an efficient or accurate usage within Ransac schemes. We factorize the problem as a low-dimensional, iterative optimization over relative rotation only, directly derived from well-known epipolar constraints. Common generalized cameras often consist of camera clusters, and give rise to omni-directional landmark observations. We prove that our iterative scheme performs well in such practically relevant situations, eventually resulting in computational efficiency similar to linear solvers, and accuracy close to bundle adjustment, while using less correspondences. Experiments on both virtual and real multi-camera systems prove superior overall performance for robust, real-time multi-camera motion-estimation.