多相机系统中相对姿态的高效计算

L. Kneip, Hongdong Li
{"title":"多相机系统中相对姿态的高效计算","authors":"L. Kneip, Hongdong Li","doi":"10.1109/CVPR.2014.64","DOIUrl":null,"url":null,"abstract":"We present a novel solution to compute the relative pose of a generalized camera. Existing solutions are either not general, have too high computational complexity, or require too many correspondences, which impedes an efficient or accurate usage within Ransac schemes. We factorize the problem as a low-dimensional, iterative optimization over relative rotation only, directly derived from well-known epipolar constraints. Common generalized cameras often consist of camera clusters, and give rise to omni-directional landmark observations. We prove that our iterative scheme performs well in such practically relevant situations, eventually resulting in computational efficiency similar to linear solvers, and accuracy close to bundle adjustment, while using less correspondences. Experiments on both virtual and real multi-camera systems prove superior overall performance for robust, real-time multi-camera motion-estimation.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Efficient Computation of Relative Pose for Multi-camera Systems\",\"authors\":\"L. Kneip, Hongdong Li\",\"doi\":\"10.1109/CVPR.2014.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel solution to compute the relative pose of a generalized camera. Existing solutions are either not general, have too high computational complexity, or require too many correspondences, which impedes an efficient or accurate usage within Ransac schemes. We factorize the problem as a low-dimensional, iterative optimization over relative rotation only, directly derived from well-known epipolar constraints. Common generalized cameras often consist of camera clusters, and give rise to omni-directional landmark observations. We prove that our iterative scheme performs well in such practically relevant situations, eventually resulting in computational efficiency similar to linear solvers, and accuracy close to bundle adjustment, while using less correspondences. Experiments on both virtual and real multi-camera systems prove superior overall performance for robust, real-time multi-camera motion-estimation.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

提出了一种计算广义相机相对位姿的新方法。现有的解决方案要么不通用,要么计算复杂性太高,要么需要太多的通信,这阻碍了Ransac方案中有效或准确的使用。我们把这个问题分解为一个低维的,迭代优化的相对旋转,直接从众所周知的极缘约束。普通的广义相机通常由相机集群组成,并产生全方位的地标观测。我们证明了我们的迭代方案在这些实际相关的情况下表现良好,最终导致计算效率与线性求解器相似,精度接近束调整,同时使用较少的对应。在虚拟和真实多摄像机系统上的实验证明,该方法具有较好的鲁棒、实时多摄像机运动估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Computation of Relative Pose for Multi-camera Systems
We present a novel solution to compute the relative pose of a generalized camera. Existing solutions are either not general, have too high computational complexity, or require too many correspondences, which impedes an efficient or accurate usage within Ransac schemes. We factorize the problem as a low-dimensional, iterative optimization over relative rotation only, directly derived from well-known epipolar constraints. Common generalized cameras often consist of camera clusters, and give rise to omni-directional landmark observations. We prove that our iterative scheme performs well in such practically relevant situations, eventually resulting in computational efficiency similar to linear solvers, and accuracy close to bundle adjustment, while using less correspondences. Experiments on both virtual and real multi-camera systems prove superior overall performance for robust, real-time multi-camera motion-estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信