F. Palumbo, Tiziana Fanni, Carlo Sau, Luca Pulina, L. Raffo, M. Masin, Evgeny Shindin, P. S. Rojas, K. Desnos, M. Pelcat, Alfonso Rodríguez, E. Juárez, F. Regazzoni, G. Meloni, Katiuscia Zedda, H. Myrhaug, Leszek Kaliciak, Joost Andriaanse, Julio A. de Oliveira Filho, Pablo Muñoz, A. Toffetti
{"title":"CERBERO:不确定混合环境下可重构系统多目标设计的跨层模型框架:特邀论文:来自UniSS、UniCA、IBM研究院、TASE、INSA-Rennes、UPM、USI、Abinsula、AmbieSense、TNO、S&T、CRF的CERBERO团队","authors":"F. Palumbo, Tiziana Fanni, Carlo Sau, Luca Pulina, L. Raffo, M. Masin, Evgeny Shindin, P. S. Rojas, K. Desnos, M. Pelcat, Alfonso Rodríguez, E. Juárez, F. Regazzoni, G. Meloni, Katiuscia Zedda, H. Myrhaug, Leszek Kaliciak, Joost Andriaanse, Julio A. de Oliveira Filho, Pablo Muñoz, A. Toffetti","doi":"10.1145/3310273.3323436","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems (CPS) are embedded computational collaborating devices, capable of sensing and controlling physical elements and, often, responding to humans. Designing and managing systems able to respond to different, concurrent requirements during operation is not straightforward, and introduce the need of proper support at design-time and run-time. The Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments (CERBERO) EU project has developed a design environment for adaptive CPS. CERBERO approach leverages on model-based methodologies including different technologies and tools developed to cover design and operation from user interactions down to low level computing layer implementation.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"CERBERO: Cross-layer modEl-based fRamework for multi-oBjective dEsign of reconfigurable systems in unceRtain hybRid envirOnments: Invited paper: CERBERO teams from UniSS, UniCA, IBM Research, TASE, INSA-Rennes, UPM, USI, Abinsula, AmbieSense, TNO, S&T, CRF\",\"authors\":\"F. Palumbo, Tiziana Fanni, Carlo Sau, Luca Pulina, L. Raffo, M. Masin, Evgeny Shindin, P. S. Rojas, K. Desnos, M. Pelcat, Alfonso Rodríguez, E. Juárez, F. Regazzoni, G. Meloni, Katiuscia Zedda, H. Myrhaug, Leszek Kaliciak, Joost Andriaanse, Julio A. de Oliveira Filho, Pablo Muñoz, A. Toffetti\",\"doi\":\"10.1145/3310273.3323436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-Physical Systems (CPS) are embedded computational collaborating devices, capable of sensing and controlling physical elements and, often, responding to humans. Designing and managing systems able to respond to different, concurrent requirements during operation is not straightforward, and introduce the need of proper support at design-time and run-time. The Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments (CERBERO) EU project has developed a design environment for adaptive CPS. CERBERO approach leverages on model-based methodologies including different technologies and tools developed to cover design and operation from user interactions down to low level computing layer implementation.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3323436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3323436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CERBERO: Cross-layer modEl-based fRamework for multi-oBjective dEsign of reconfigurable systems in unceRtain hybRid envirOnments: Invited paper: CERBERO teams from UniSS, UniCA, IBM Research, TASE, INSA-Rennes, UPM, USI, Abinsula, AmbieSense, TNO, S&T, CRF
Cyber-Physical Systems (CPS) are embedded computational collaborating devices, capable of sensing and controlling physical elements and, often, responding to humans. Designing and managing systems able to respond to different, concurrent requirements during operation is not straightforward, and introduce the need of proper support at design-time and run-time. The Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments (CERBERO) EU project has developed a design environment for adaptive CPS. CERBERO approach leverages on model-based methodologies including different technologies and tools developed to cover design and operation from user interactions down to low level computing layer implementation.