乳房x光筛检中改进肿块检测模型的误差调查

N. Eltonsy, E. Essock-Burns, G. Tourrasi, Adel Said Elmaghraby
{"title":"乳房x光筛检中改进肿块检测模型的误差调查","authors":"N. Eltonsy, E. Essock-Burns, G. Tourrasi, Adel Said Elmaghraby","doi":"10.1109/ISSPIT.2005.1577200","DOIUrl":null,"url":null,"abstract":"This study analyzes the performance of a computer aided detection (CAD) scheme for mass detection in mammography. We investigate the trained parameters of the detection scheme before any further testing. We use an extended version of a previously reported mass detection scheme. We analyze the detection parameters by using linear canonical discriminants (LCD) and compare results with logistic regression and multi layer perceptron neural network models. Preliminary results suggest that regression and multi layer perceptron neural network showed the best receiver operator characteristics (ROC). The LCD analysis predictive function showed that the trained CAD scheme performance can maintain 99.08% sensitivity (108/109) with false positive rate (FPI) of 8 per image with ROC Az= 0.74plusmn0.01. The regression and the multi layer perceptron neural network ROC analysis showed stronger backbone for the CAD algorithm viewing that the extended CAD scheme can operate at 96% sensitivity with 5.6 FPI per image. These preliminary results suggest that further logic to reduce FPI is needed for the CAD algorithm to be more predictive","PeriodicalId":421826,"journal":{"name":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Error investigation of models for improved detection of masses in screening mammography\",\"authors\":\"N. Eltonsy, E. Essock-Burns, G. Tourrasi, Adel Said Elmaghraby\",\"doi\":\"10.1109/ISSPIT.2005.1577200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study analyzes the performance of a computer aided detection (CAD) scheme for mass detection in mammography. We investigate the trained parameters of the detection scheme before any further testing. We use an extended version of a previously reported mass detection scheme. We analyze the detection parameters by using linear canonical discriminants (LCD) and compare results with logistic regression and multi layer perceptron neural network models. Preliminary results suggest that regression and multi layer perceptron neural network showed the best receiver operator characteristics (ROC). The LCD analysis predictive function showed that the trained CAD scheme performance can maintain 99.08% sensitivity (108/109) with false positive rate (FPI) of 8 per image with ROC Az= 0.74plusmn0.01. The regression and the multi layer perceptron neural network ROC analysis showed stronger backbone for the CAD algorithm viewing that the extended CAD scheme can operate at 96% sensitivity with 5.6 FPI per image. These preliminary results suggest that further logic to reduce FPI is needed for the CAD algorithm to be more predictive\",\"PeriodicalId\":421826,\"journal\":{\"name\":\"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2005.1577200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2005.1577200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究分析了计算机辅助检测(CAD)方案在乳房x光检查中的性能。在任何进一步的测试之前,我们研究检测方案的训练参数。我们使用先前报道的质量检测方案的扩展版本。我们使用线性正则判别(LCD)分析检测参数,并将结果与逻辑回归和多层感知器神经网络模型进行比较。初步结果表明,回归和多层感知器神经网络具有最佳的接收算子特征(ROC)。LCD分析预测函数表明,训练后的CAD方案性能可以保持99.08%的灵敏度(108/109),每幅图像的假阳性率(FPI)为8,ROC Az= 0.74 + usmn0.01。回归和多层感知器神经网络ROC分析显示CAD算法的主干更强,扩展的CAD方案可以以96%的灵敏度运行,每张图像5.6 FPI。这些初步结果表明,为了使CAD算法更具预测性,需要进一步降低FPI的逻辑
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error investigation of models for improved detection of masses in screening mammography
This study analyzes the performance of a computer aided detection (CAD) scheme for mass detection in mammography. We investigate the trained parameters of the detection scheme before any further testing. We use an extended version of a previously reported mass detection scheme. We analyze the detection parameters by using linear canonical discriminants (LCD) and compare results with logistic regression and multi layer perceptron neural network models. Preliminary results suggest that regression and multi layer perceptron neural network showed the best receiver operator characteristics (ROC). The LCD analysis predictive function showed that the trained CAD scheme performance can maintain 99.08% sensitivity (108/109) with false positive rate (FPI) of 8 per image with ROC Az= 0.74plusmn0.01. The regression and the multi layer perceptron neural network ROC analysis showed stronger backbone for the CAD algorithm viewing that the extended CAD scheme can operate at 96% sensitivity with 5.6 FPI per image. These preliminary results suggest that further logic to reduce FPI is needed for the CAD algorithm to be more predictive
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信