扫描透射x射线显微镜差相衬成像

J. R. Palmer, G. Morrison
{"title":"扫描透射x射线显微镜差相衬成像","authors":"J. R. Palmer, G. Morrison","doi":"10.1364/sxray.1991.wa15","DOIUrl":null,"url":null,"abstract":"In the scanning transmission x-ray microscope (STXM) the specimen is scanned in a raster by an x-ray probe formed with a Fresnel zone plate. To achieve near diffraction limited resolution it is necessary to have a coherent source, even when forming an incoherent brightfield image by measuring the x-ray intensity transmitted by the object. This has so far been the only imaging mode used in the STXM and for hydrated biological specimens is well suited to soft x-ray wavelengths within the “water window” (2‧33 to 4‧36 nm) where carbon absorbs much more strongly than water. However, by the use of phase contrast rather than amplitude contrast, it is possible to form images at wavelengths where the absorption is low, resulting in lower radiation dose for the same level of contrast. Calculations made by Howells [1] and Rudolph and Schmahl [2] have demonstrated very clearly the advantages of phase contrast imaging at wavelengths outside the water window.","PeriodicalId":409291,"journal":{"name":"Soft-X-Ray Projection Lithography","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Differential Phase Contrast Imaging in the Scanning Transmission X-ray Microscope\",\"authors\":\"J. R. Palmer, G. Morrison\",\"doi\":\"10.1364/sxray.1991.wa15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the scanning transmission x-ray microscope (STXM) the specimen is scanned in a raster by an x-ray probe formed with a Fresnel zone plate. To achieve near diffraction limited resolution it is necessary to have a coherent source, even when forming an incoherent brightfield image by measuring the x-ray intensity transmitted by the object. This has so far been the only imaging mode used in the STXM and for hydrated biological specimens is well suited to soft x-ray wavelengths within the “water window” (2‧33 to 4‧36 nm) where carbon absorbs much more strongly than water. However, by the use of phase contrast rather than amplitude contrast, it is possible to form images at wavelengths where the absorption is low, resulting in lower radiation dose for the same level of contrast. Calculations made by Howells [1] and Rudolph and Schmahl [2] have demonstrated very clearly the advantages of phase contrast imaging at wavelengths outside the water window.\",\"PeriodicalId\":409291,\"journal\":{\"name\":\"Soft-X-Ray Projection Lithography\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft-X-Ray Projection Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/sxray.1991.wa15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft-X-Ray Projection Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/sxray.1991.wa15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在扫描透射x射线显微镜(STXM)中,用菲涅耳带板形成的x射线探针在光栅中扫描样品。为了达到接近衍射极限的分辨率,必须有一个相干光源,即使通过测量物体透射的x射线强度形成非相干明场图像时也是如此。这是迄今为止唯一用于STXM和水合生物标本的成像模式,非常适合“水窗”(2·33至4·36纳米)内的软x射线波长,因为碳的吸收比水强得多。然而,通过使用相位对比而不是幅度对比,可以在吸收较低的波长处形成图像,从而在相同对比度水平下产生较低的辐射剂量。Howells[1]、Rudolph和Schmahl[1]的计算已经非常清楚地证明了在水窗外波长处相衬成像的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Phase Contrast Imaging in the Scanning Transmission X-ray Microscope
In the scanning transmission x-ray microscope (STXM) the specimen is scanned in a raster by an x-ray probe formed with a Fresnel zone plate. To achieve near diffraction limited resolution it is necessary to have a coherent source, even when forming an incoherent brightfield image by measuring the x-ray intensity transmitted by the object. This has so far been the only imaging mode used in the STXM and for hydrated biological specimens is well suited to soft x-ray wavelengths within the “water window” (2‧33 to 4‧36 nm) where carbon absorbs much more strongly than water. However, by the use of phase contrast rather than amplitude contrast, it is possible to form images at wavelengths where the absorption is low, resulting in lower radiation dose for the same level of contrast. Calculations made by Howells [1] and Rudolph and Schmahl [2] have demonstrated very clearly the advantages of phase contrast imaging at wavelengths outside the water window.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信