杜鹃线性代数

Li Zhou, D. Andersen, Mu Li, Alex Smola
{"title":"杜鹃线性代数","authors":"Li Zhou, D. Andersen, Mu Li, Alex Smola","doi":"10.1145/2783258.2783263","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel data structure for sparse vectors based on Cuckoo hashing. It is highly memory efficient and allows for random access at near dense vector level rates. This allows us to solve sparse l1 programming problems exactly and without preprocessing at a cost that is identical to dense linear algebra both in terms of memory and speed. Our approach provides a feasible alternative to the hash kernel and it excels whenever exact solutions are required, such as for feature selection.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cuckoo Linear Algebra\",\"authors\":\"Li Zhou, D. Andersen, Mu Li, Alex Smola\",\"doi\":\"10.1145/2783258.2783263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel data structure for sparse vectors based on Cuckoo hashing. It is highly memory efficient and allows for random access at near dense vector level rates. This allows us to solve sparse l1 programming problems exactly and without preprocessing at a cost that is identical to dense linear algebra both in terms of memory and speed. Our approach provides a feasible alternative to the hash kernel and it excels whenever exact solutions are required, such as for feature selection.\",\"PeriodicalId\":243428,\"journal\":{\"name\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783258.2783263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于布谷鸟哈希的稀疏向量数据结构。它具有很高的内存效率,并允许以接近密集向量水平的速率随机访问。这使我们能够精确地解决稀疏l1编程问题,而无需预处理,其成本在内存和速度方面与密集线性代数相同。我们的方法为哈希内核提供了一种可行的替代方案,并且在需要精确解决方案时,例如特征选择时,它都表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cuckoo Linear Algebra
In this paper we present a novel data structure for sparse vectors based on Cuckoo hashing. It is highly memory efficient and allows for random access at near dense vector level rates. This allows us to solve sparse l1 programming problems exactly and without preprocessing at a cost that is identical to dense linear algebra both in terms of memory and speed. Our approach provides a feasible alternative to the hash kernel and it excels whenever exact solutions are required, such as for feature selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信