一种在三维网格子段之间传递平行颚抓取的算法

Matthew Matl, Jeffrey Mahler, Ken Goldberg
{"title":"一种在三维网格子段之间传递平行颚抓取的算法","authors":"Matthew Matl, Jeffrey Mahler, Ken Goldberg","doi":"10.1109/COASE.2017.8256195","DOIUrl":null,"url":null,"abstract":"In this paper, we present an algorithm that improves the rate of successful grasp transfer between 3D mesh models by breaking each mesh into functional subsegments and transferring grasps between similar subsegments rather than between full models. This algorithm combines prior research on grasp transfer with mesh segmentation techniques from computer graphics to successfully transfer contact points more often while potentially preserving task-specific knowledge across transfers. The algorithm extracts subsegments from each mesh model with a customized segmentation algorithm designed for speed and then groups similar subsegments with D2 shape descriptors and Gaussian mixture models (GMMs). Grasps are then transferred by aligning similar subsegments with Super4PCS, a global point cloud registration algorithm. We experimentally evaluated this algorithm against a non-segmenting baseline on over 20,000 grasp transfers across a set of 80 objects and found that the segmentation-based algorithm improved the success rate for finding a transferred grasp from 82% to 98%. Additionally, grasps transferred with our algorithm were only 8.7% less robust on average than the original grasps without any local re-planning.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An algorithm for transferring parallel-jaw grasps between 3D mesh subsegments\",\"authors\":\"Matthew Matl, Jeffrey Mahler, Ken Goldberg\",\"doi\":\"10.1109/COASE.2017.8256195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an algorithm that improves the rate of successful grasp transfer between 3D mesh models by breaking each mesh into functional subsegments and transferring grasps between similar subsegments rather than between full models. This algorithm combines prior research on grasp transfer with mesh segmentation techniques from computer graphics to successfully transfer contact points more often while potentially preserving task-specific knowledge across transfers. The algorithm extracts subsegments from each mesh model with a customized segmentation algorithm designed for speed and then groups similar subsegments with D2 shape descriptors and Gaussian mixture models (GMMs). Grasps are then transferred by aligning similar subsegments with Super4PCS, a global point cloud registration algorithm. We experimentally evaluated this algorithm against a non-segmenting baseline on over 20,000 grasp transfers across a set of 80 objects and found that the segmentation-based algorithm improved the success rate for finding a transferred grasp from 82% to 98%. Additionally, grasps transferred with our algorithm were only 8.7% less robust on average than the original grasps without any local re-planning.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种算法,该算法通过将每个网格分解为功能子段,并在相似子段之间而不是在完整模型之间传递抓取,提高了3D网格模型之间抓取转移的成功率。该算法将先前的抓握转移研究与计算机图形学的网格分割技术相结合,成功地更频繁地转移接触点,同时潜在地保留跨转移的特定任务知识。该算法采用基于速度的自定义分割算法从每个网格模型中提取子段,然后使用D2形状描述符和高斯混合模型(GMMs)对相似子段进行分组。然后通过与Super4PCS(一种全局点云配准算法)对齐相似的子段来转移抓取。我们在80个对象上超过20,000次抓取转移的非分割基线上对该算法进行了实验评估,发现基于分割的算法将发现转移抓取的成功率从82%提高到98%。此外,在没有任何局部重新规划的情况下,用我们的算法转移的抓取平均只比原始抓取低8.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm for transferring parallel-jaw grasps between 3D mesh subsegments
In this paper, we present an algorithm that improves the rate of successful grasp transfer between 3D mesh models by breaking each mesh into functional subsegments and transferring grasps between similar subsegments rather than between full models. This algorithm combines prior research on grasp transfer with mesh segmentation techniques from computer graphics to successfully transfer contact points more often while potentially preserving task-specific knowledge across transfers. The algorithm extracts subsegments from each mesh model with a customized segmentation algorithm designed for speed and then groups similar subsegments with D2 shape descriptors and Gaussian mixture models (GMMs). Grasps are then transferred by aligning similar subsegments with Super4PCS, a global point cloud registration algorithm. We experimentally evaluated this algorithm against a non-segmenting baseline on over 20,000 grasp transfers across a set of 80 objects and found that the segmentation-based algorithm improved the success rate for finding a transferred grasp from 82% to 98%. Additionally, grasps transferred with our algorithm were only 8.7% less robust on average than the original grasps without any local re-planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信