自然动作处理

W. Housley, Saul Albert, E. Stokoe
{"title":"自然动作处理","authors":"W. Housley, Saul Albert, E. Stokoe","doi":"10.1145/3363384.3363478","DOIUrl":null,"url":null,"abstract":"This position paper identifies a crucial opportunity for the reciprocal exchange of methods, data and phenomena between conversation analysis (CA), ethnomethodology (EM) and computer science (CS). Conventional CS classification of sentiment, tone of voice, or personality do not address what people do with language or the paired sequences that organize actions into social interaction. We argue that CA and EM can innovate and substantially enhance the scope of the dominant CS approaches to big interactional data if artificial intelligence-based natural language processing systems are trained using CA annotated data to do what we call natural action processing.","PeriodicalId":281851,"journal":{"name":"Proceedings of the Halfway to the Future Symposium 2019","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Natural Action Processing\",\"authors\":\"W. Housley, Saul Albert, E. Stokoe\",\"doi\":\"10.1145/3363384.3363478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This position paper identifies a crucial opportunity for the reciprocal exchange of methods, data and phenomena between conversation analysis (CA), ethnomethodology (EM) and computer science (CS). Conventional CS classification of sentiment, tone of voice, or personality do not address what people do with language or the paired sequences that organize actions into social interaction. We argue that CA and EM can innovate and substantially enhance the scope of the dominant CS approaches to big interactional data if artificial intelligence-based natural language processing systems are trained using CA annotated data to do what we call natural action processing.\",\"PeriodicalId\":281851,\"journal\":{\"name\":\"Proceedings of the Halfway to the Future Symposium 2019\",\"volume\":\"261 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Halfway to the Future Symposium 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3363384.3363478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Halfway to the Future Symposium 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3363384.3363478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本立场文件确定了对话分析(CA),民族方法学(EM)和计算机科学(CS)之间相互交换方法,数据和现象的关键机会。传统的CS情感、语调或个性分类并不能解决人们使用语言或将行动组织成社交互动的配对序列的问题。我们认为,如果基于人工智能的自然语言处理系统使用CA注释的数据进行我们所谓的自然动作处理,那么CA和EM可以创新并大大增强主流CS方法处理大交互数据的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural Action Processing
This position paper identifies a crucial opportunity for the reciprocal exchange of methods, data and phenomena between conversation analysis (CA), ethnomethodology (EM) and computer science (CS). Conventional CS classification of sentiment, tone of voice, or personality do not address what people do with language or the paired sequences that organize actions into social interaction. We argue that CA and EM can innovate and substantially enhance the scope of the dominant CS approaches to big interactional data if artificial intelligence-based natural language processing systems are trained using CA annotated data to do what we call natural action processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信