{"title":"Ugi反应方案中化学反应自动分类的一种有效算法","authors":"Sanjay Ram, Somnath Pal","doi":"10.4018/ijcce.2012070101","DOIUrl":null,"url":null,"abstract":"There are two approaches for classification of chemical reactions: Model-Driven and Data-Driven. In this paper, the authors develop an efficient algorithm based on a model-driven approach developed by Ugi and co-workers for classification of chemical reactions. The authors’ algorithm takes reaction matrix of a chemical reaction as input and generates its appropriate class as output. Reaction matrices being symmetric, matrix implementation of Ugi’s scheme using upper/lower tri-angular matrix is of O(n2) in terms of space complexity. Time complexity of similar matrix implementation is O(n4), both in worst case as well as in average case. The proposed algorithm uses two fixed size look-up tables in a novel way and requires constant space complexity. Time complexity both in worst and average cases of the algorithm is linear.","PeriodicalId":132974,"journal":{"name":"Int. J. Chemoinformatics Chem. Eng.","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An Efficient Algorithm for Automating Classification of Chemical Reactions into Classes in Ugi's Reaction Scheme\",\"authors\":\"Sanjay Ram, Somnath Pal\",\"doi\":\"10.4018/ijcce.2012070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two approaches for classification of chemical reactions: Model-Driven and Data-Driven. In this paper, the authors develop an efficient algorithm based on a model-driven approach developed by Ugi and co-workers for classification of chemical reactions. The authors’ algorithm takes reaction matrix of a chemical reaction as input and generates its appropriate class as output. Reaction matrices being symmetric, matrix implementation of Ugi’s scheme using upper/lower tri-angular matrix is of O(n2) in terms of space complexity. Time complexity of similar matrix implementation is O(n4), both in worst case as well as in average case. The proposed algorithm uses two fixed size look-up tables in a novel way and requires constant space complexity. Time complexity both in worst and average cases of the algorithm is linear.\",\"PeriodicalId\":132974,\"journal\":{\"name\":\"Int. J. Chemoinformatics Chem. Eng.\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Chemoinformatics Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcce.2012070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Chemoinformatics Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcce.2012070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Algorithm for Automating Classification of Chemical Reactions into Classes in Ugi's Reaction Scheme
There are two approaches for classification of chemical reactions: Model-Driven and Data-Driven. In this paper, the authors develop an efficient algorithm based on a model-driven approach developed by Ugi and co-workers for classification of chemical reactions. The authors’ algorithm takes reaction matrix of a chemical reaction as input and generates its appropriate class as output. Reaction matrices being symmetric, matrix implementation of Ugi’s scheme using upper/lower tri-angular matrix is of O(n2) in terms of space complexity. Time complexity of similar matrix implementation is O(n4), both in worst case as well as in average case. The proposed algorithm uses two fixed size look-up tables in a novel way and requires constant space complexity. Time complexity both in worst and average cases of the algorithm is linear.