{"title":"三次型理论的同伦正则性","authors":"T. Coquand, Simon Huber, Christian Sattler","doi":"10.4230/LIPIcs.FSCD.2019.11","DOIUrl":null,"url":null,"abstract":"Cubical type theory provides a constructive justification of homotopy type theory and satisfies canonicity: every natural number is convertible to a numeral. A crucial ingredient of cubical type theory is a path lifting operation which is explained computationally by induction on the type involving several non-canonical choices. In this paper we show by a sconing argument that if we remove these equations for the path lifting operation from the system, we still retain homotopy canonicity: every natural number is path equal to a numeral.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Homotopy canonicity for cubical type theory\",\"authors\":\"T. Coquand, Simon Huber, Christian Sattler\",\"doi\":\"10.4230/LIPIcs.FSCD.2019.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cubical type theory provides a constructive justification of homotopy type theory and satisfies canonicity: every natural number is convertible to a numeral. A crucial ingredient of cubical type theory is a path lifting operation which is explained computationally by induction on the type involving several non-canonical choices. In this paper we show by a sconing argument that if we remove these equations for the path lifting operation from the system, we still retain homotopy canonicity: every natural number is path equal to a numeral.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSCD.2019.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2019.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cubical type theory provides a constructive justification of homotopy type theory and satisfies canonicity: every natural number is convertible to a numeral. A crucial ingredient of cubical type theory is a path lifting operation which is explained computationally by induction on the type involving several non-canonical choices. In this paper we show by a sconing argument that if we remove these equations for the path lifting operation from the system, we still retain homotopy canonicity: every natural number is path equal to a numeral.