P. Berenbrink, K. Khodamoradi, Thomas Sauerwald, Alexandre O. Stauffer
{"title":"球-仓几乎最佳负载分配","authors":"P. Berenbrink, K. Khodamoradi, Thomas Sauerwald, Alexandre O. Stauffer","doi":"10.1145/2486159.2486191","DOIUrl":null,"url":null,"abstract":"We consider sequential balls-into-bins processes that randomly allocate m balls into n bins. We analyze two allocation schemes that achieve a close to optimal maximum load of ⌈m/n⌉ + 1 and require only O(m) (expected) allocation time. These parameters should be compared with the classic d-choice-process which achieves a maximum load of m/n + log log n/d + O(1) and requires m • d allocation time.","PeriodicalId":353007,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Balls-into-bins with nearly optimal load distribution\",\"authors\":\"P. Berenbrink, K. Khodamoradi, Thomas Sauerwald, Alexandre O. Stauffer\",\"doi\":\"10.1145/2486159.2486191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider sequential balls-into-bins processes that randomly allocate m balls into n bins. We analyze two allocation schemes that achieve a close to optimal maximum load of ⌈m/n⌉ + 1 and require only O(m) (expected) allocation time. These parameters should be compared with the classic d-choice-process which achieves a maximum load of m/n + log log n/d + O(1) and requires m • d allocation time.\",\"PeriodicalId\":353007,\"journal\":{\"name\":\"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2486159.2486191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486159.2486191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Balls-into-bins with nearly optimal load distribution
We consider sequential balls-into-bins processes that randomly allocate m balls into n bins. We analyze two allocation schemes that achieve a close to optimal maximum load of ⌈m/n⌉ + 1 and require only O(m) (expected) allocation time. These parameters should be compared with the classic d-choice-process which achieves a maximum load of m/n + log log n/d + O(1) and requires m • d allocation time.