{"title":"相位偏移未知的盲相位调幅分类","authors":"M. Wong, A. Nandi","doi":"10.1109/ICPR.2006.333","DOIUrl":null,"url":null,"abstract":"This paper first discusses the maximum likelihood (ML) classifier for automatic classification of digital modulations. The classifier is optimum for classification of phase-amplitude modulated signals under ideal environment. However, this is not the case in the presence of phase offset owing to inaccurate estimation. In this paper, we propose a novel non-coherent ML classifier to mitigate the effect phase offset. The non-coherent ML classifier adopts a pre-classification phase correction stage through a closed form estimator based on higher order statistics. Experimental results show improvement of classification accuracy at reasonable signal to noise ratio","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Blind Phase-Amplitude Modulation Classification with Unknown Phase Offset\",\"authors\":\"M. Wong, A. Nandi\",\"doi\":\"10.1109/ICPR.2006.333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper first discusses the maximum likelihood (ML) classifier for automatic classification of digital modulations. The classifier is optimum for classification of phase-amplitude modulated signals under ideal environment. However, this is not the case in the presence of phase offset owing to inaccurate estimation. In this paper, we propose a novel non-coherent ML classifier to mitigate the effect phase offset. The non-coherent ML classifier adopts a pre-classification phase correction stage through a closed form estimator based on higher order statistics. Experimental results show improvement of classification accuracy at reasonable signal to noise ratio\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blind Phase-Amplitude Modulation Classification with Unknown Phase Offset
This paper first discusses the maximum likelihood (ML) classifier for automatic classification of digital modulations. The classifier is optimum for classification of phase-amplitude modulated signals under ideal environment. However, this is not the case in the presence of phase offset owing to inaccurate estimation. In this paper, we propose a novel non-coherent ML classifier to mitigate the effect phase offset. The non-coherent ML classifier adopts a pre-classification phase correction stage through a closed form estimator based on higher order statistics. Experimental results show improvement of classification accuracy at reasonable signal to noise ratio