基于注视的自我中心视频动作片段的无监督分割

I. Hipiny, Hamimah Ujir, Jacey-Lynn Minoi, Sarah Flora Samson Juan, M. A. Khairuddin, M. Sunar
{"title":"基于注视的自我中心视频动作片段的无监督分割","authors":"I. Hipiny, Hamimah Ujir, Jacey-Lynn Minoi, Sarah Flora Samson Juan, M. A. Khairuddin, M. Sunar","doi":"10.1109/ICSIPA.2017.8120635","DOIUrl":null,"url":null,"abstract":"Unsupervised segmentation of action segments in egocentric videos is a desirable feature in tasks such as activity recognition and content-based video retrieval. Reducing the search space into a finite set of action segments facilitates a faster and less noisy matching. However, there exist a substantial gap in machine's understanding of natural temporal cuts during a continuous human activity. This work reports on a novel gaze-based approach for segmenting action segments in videos captured using an egocentric camera. Gaze is used to locate the region-of-interest inside a frame. By tracking two simple motion-based parameters inside successive regions-of-interest, we discover a finite set of temporal cuts. We present several results using combinations (of the two parameters) on a dataset, i.e., BRISGAZE-ACTIONS. The dataset contains egocentric videos depicting several daily-living activities. The quality of the temporal cuts is further improved by implementing two entropy measures.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unsupervised segmentation of action segments in egocentric videos using gaze\",\"authors\":\"I. Hipiny, Hamimah Ujir, Jacey-Lynn Minoi, Sarah Flora Samson Juan, M. A. Khairuddin, M. Sunar\",\"doi\":\"10.1109/ICSIPA.2017.8120635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised segmentation of action segments in egocentric videos is a desirable feature in tasks such as activity recognition and content-based video retrieval. Reducing the search space into a finite set of action segments facilitates a faster and less noisy matching. However, there exist a substantial gap in machine's understanding of natural temporal cuts during a continuous human activity. This work reports on a novel gaze-based approach for segmenting action segments in videos captured using an egocentric camera. Gaze is used to locate the region-of-interest inside a frame. By tracking two simple motion-based parameters inside successive regions-of-interest, we discover a finite set of temporal cuts. We present several results using combinations (of the two parameters) on a dataset, i.e., BRISGAZE-ACTIONS. The dataset contains egocentric videos depicting several daily-living activities. The quality of the temporal cuts is further improved by implementing two entropy measures.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在以自我为中心的视频中对动作片段进行无监督分割是活动识别和基于内容的视频检索等任务中需要的功能。将搜索空间简化为有限的动作片段集有助于更快、更少噪声的匹配。然而,在人类连续活动中,机器对自然时间切割的理解存在很大的差距。这项工作报告了一种新颖的基于凝视的方法,用于分割使用自我中心相机拍摄的视频中的动作片段。凝视用于定位帧内感兴趣的区域。通过跟踪连续感兴趣区域内的两个简单的基于运动的参数,我们发现了一组有限的时间切割。我们在一个数据集上使用(两个参数的)组合呈现了几个结果,即brisgase - actions。该数据集包含以自我为中心的视频,描述了几种日常生活活动。通过实现两个熵测度,进一步提高了时间切割的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised segmentation of action segments in egocentric videos using gaze
Unsupervised segmentation of action segments in egocentric videos is a desirable feature in tasks such as activity recognition and content-based video retrieval. Reducing the search space into a finite set of action segments facilitates a faster and less noisy matching. However, there exist a substantial gap in machine's understanding of natural temporal cuts during a continuous human activity. This work reports on a novel gaze-based approach for segmenting action segments in videos captured using an egocentric camera. Gaze is used to locate the region-of-interest inside a frame. By tracking two simple motion-based parameters inside successive regions-of-interest, we discover a finite set of temporal cuts. We present several results using combinations (of the two parameters) on a dataset, i.e., BRISGAZE-ACTIONS. The dataset contains egocentric videos depicting several daily-living activities. The quality of the temporal cuts is further improved by implementing two entropy measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信