伪相关反馈在融合检索中的应用

Haggai Roitman
{"title":"伪相关反馈在融合检索中的应用","authors":"Haggai Roitman","doi":"10.1145/3234944.3234969","DOIUrl":null,"url":null,"abstract":"The usage of positive relevance feedback in fusion-based retrieval was previously shown to be very useful. Yet, in many retrieval use-cases, no actual relevance feedback may be available. With the absence of relevance data, pseudo-relevance feedback models have been suggested as an alternative. Encouraged by the previous success of using positive relevance feedback in fusion-based retrieval, in this work, we study the usage of pseudo-relevance feedback in this setting as well. We build on top of an existing approach that was originally designed for utilizing positive relevance feedback and adapt it to pseudo-relevance feedback. To this end, we propose a novel approach for estimating document (pseudo) relevance labels. Our labeling approach is better tailored to the fusion-based retrieval setting and provides favorable retrieval quality results.","PeriodicalId":193631,"journal":{"name":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Utilizing Pseudo-Relevance Feedback in Fusion-based Retrieval\",\"authors\":\"Haggai Roitman\",\"doi\":\"10.1145/3234944.3234969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The usage of positive relevance feedback in fusion-based retrieval was previously shown to be very useful. Yet, in many retrieval use-cases, no actual relevance feedback may be available. With the absence of relevance data, pseudo-relevance feedback models have been suggested as an alternative. Encouraged by the previous success of using positive relevance feedback in fusion-based retrieval, in this work, we study the usage of pseudo-relevance feedback in this setting as well. We build on top of an existing approach that was originally designed for utilizing positive relevance feedback and adapt it to pseudo-relevance feedback. To this end, we propose a novel approach for estimating document (pseudo) relevance labels. Our labeling approach is better tailored to the fusion-based retrieval setting and provides favorable retrieval quality results.\",\"PeriodicalId\":193631,\"journal\":{\"name\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234944.3234969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234944.3234969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在基于融合的检索中使用正相关反馈先前被证明是非常有用的。然而,在许多检索用例中,可能没有实际的相关反馈可用。由于缺乏相关数据,伪相关反馈模型被建议作为一种替代方法。受到先前在基于融合的检索中使用正相关反馈的成功的鼓舞,在这项工作中,我们也研究了伪相关反馈在这种情况下的使用。我们建立在现有方法的基础上,该方法最初是为了利用积极的相关反馈而设计的,并将其适应于伪相关反馈。为此,我们提出了一种估计文档(伪)相关标签的新方法。我们的标注方法更适合基于融合的检索设置,并提供了良好的检索质量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Pseudo-Relevance Feedback in Fusion-based Retrieval
The usage of positive relevance feedback in fusion-based retrieval was previously shown to be very useful. Yet, in many retrieval use-cases, no actual relevance feedback may be available. With the absence of relevance data, pseudo-relevance feedback models have been suggested as an alternative. Encouraged by the previous success of using positive relevance feedback in fusion-based retrieval, in this work, we study the usage of pseudo-relevance feedback in this setting as well. We build on top of an existing approach that was originally designed for utilizing positive relevance feedback and adapt it to pseudo-relevance feedback. To this end, we propose a novel approach for estimating document (pseudo) relevance labels. Our labeling approach is better tailored to the fusion-based retrieval setting and provides favorable retrieval quality results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信