基于子空间投影和随机约束的平稳分量递归分离

J. D. Martínez-Vargas, Cristian Castro Hoyos, A. Álvarez-Meza, C. Acosta-Medina, G. Castellanos-Domínguez
{"title":"基于子空间投影和随机约束的平稳分量递归分离","authors":"J. D. Martínez-Vargas, Cristian Castro Hoyos, A. Álvarez-Meza, C. Acosta-Medina, G. Castellanos-Domínguez","doi":"10.1109/ICPR.2014.597","DOIUrl":null,"url":null,"abstract":"We propose a filtration approach to discriminate between stationary and non-stationary signals which consist into recursively update an enhanced representation of input time-series in such a way that the decomposition is able to identify time-varying statistical parameters of the data. The approach is based on the hypothesis that such updating providing a time-varying subspace projection under stationary constraints, allows to obtain a better separation. Validation of quality separation is carried on simulated and real data. In both cases, obtained separation shows that proposed approach is able to identify different dynamics on analyzed data.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recursive Separation of Stationary Components by Subspace Projection and Stochastic Constraints\",\"authors\":\"J. D. Martínez-Vargas, Cristian Castro Hoyos, A. Álvarez-Meza, C. Acosta-Medina, G. Castellanos-Domínguez\",\"doi\":\"10.1109/ICPR.2014.597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a filtration approach to discriminate between stationary and non-stationary signals which consist into recursively update an enhanced representation of input time-series in such a way that the decomposition is able to identify time-varying statistical parameters of the data. The approach is based on the hypothesis that such updating providing a time-varying subspace projection under stationary constraints, allows to obtain a better separation. Validation of quality separation is carried on simulated and real data. In both cases, obtained separation shows that proposed approach is able to identify different dynamics on analyzed data.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种过滤方法来区分平稳和非平稳信号,这些信号包括递归地更新输入时间序列的增强表示,这样分解就能够识别数据的时变统计参数。该方法基于这样的假设,即这种更新在平稳约束下提供时变子空间投影,可以获得更好的分离。通过仿真和实际数据对质量分离进行了验证。在这两种情况下,得到的分离表明,所提出的方法能够识别分析数据上的不同动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive Separation of Stationary Components by Subspace Projection and Stochastic Constraints
We propose a filtration approach to discriminate between stationary and non-stationary signals which consist into recursively update an enhanced representation of input time-series in such a way that the decomposition is able to identify time-varying statistical parameters of the data. The approach is based on the hypothesis that such updating providing a time-varying subspace projection under stationary constraints, allows to obtain a better separation. Validation of quality separation is carried on simulated and real data. In both cases, obtained separation shows that proposed approach is able to identify different dynamics on analyzed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信