可视化流动在曲线网格表面使用线积分卷积

Lisa K. Forssell
{"title":"可视化流动在曲线网格表面使用线积分卷积","authors":"Lisa K. Forssell","doi":"10.1109/VISUAL.1994.346313","DOIUrl":null,"url":null,"abstract":"Line integral convolution (LIC), introduced by B. Cabral and C. Leedom (1993), is a powerful technique for imaging and animating vector fields. We extend the LIC paradigm in three ways: the existing technique is limited to vector fields over a regular Cartesian grid and we extend it to vector fields over parametric surfaces, specifically those found in curvilinear grids, used in computational fluid dynamics simulations; periodic motion filters can be used to animate the flow visualization, but when the flow lies on a parametric surface, the motion appears misleading, and we explain why this problem arises and show how to adjust the LIC algorithm to handle it; we introduce a technique to visualize vector magnitude as well as vector direction, which is based on varying the frequency of the filter function and we develop a different technique based on kernel phase shifts which we have found to show substantially better results. Implementation of these algorithms utilizes texture-mapping hardware to run in real time, which allows them to be included in interactive applications.<<ETX>>","PeriodicalId":273215,"journal":{"name":"Proceedings Visualization '94","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Visualizing flow over curvilinear grid surfaces using line integral convolution\",\"authors\":\"Lisa K. Forssell\",\"doi\":\"10.1109/VISUAL.1994.346313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Line integral convolution (LIC), introduced by B. Cabral and C. Leedom (1993), is a powerful technique for imaging and animating vector fields. We extend the LIC paradigm in three ways: the existing technique is limited to vector fields over a regular Cartesian grid and we extend it to vector fields over parametric surfaces, specifically those found in curvilinear grids, used in computational fluid dynamics simulations; periodic motion filters can be used to animate the flow visualization, but when the flow lies on a parametric surface, the motion appears misleading, and we explain why this problem arises and show how to adjust the LIC algorithm to handle it; we introduce a technique to visualize vector magnitude as well as vector direction, which is based on varying the frequency of the filter function and we develop a different technique based on kernel phase shifts which we have found to show substantially better results. Implementation of these algorithms utilizes texture-mapping hardware to run in real time, which allows them to be included in interactive applications.<<ETX>>\",\"PeriodicalId\":273215,\"journal\":{\"name\":\"Proceedings Visualization '94\",\"volume\":\"320 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Visualization '94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.1994.346313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Visualization '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.1994.346313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

线积分卷积(LIC)是由B. Cabral和C. Leedom(1993)提出的,是一种强大的矢量场成像和动画技术。我们以三种方式扩展LIC范式:现有技术仅限于规则笛卡尔网格上的矢量场,我们将其扩展到参数表面上的矢量场,特别是在曲线网格中发现的矢量场,用于计算流体动力学模拟;周期运动滤波器可以用于动画流的可视化,但当流位于参数表面时,运动出现误导,我们解释了为什么会出现这个问题,并展示了如何调整LIC算法来处理它;我们介绍了一种基于改变滤波器函数的频率来可视化矢量幅度和矢量方向的技术,我们开发了一种基于核相移的不同技术,我们发现它显示出更好的结果。这些算法的实现利用纹理映射硬件实时运行,这使得它们可以包含在交互式应用程序中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing flow over curvilinear grid surfaces using line integral convolution
Line integral convolution (LIC), introduced by B. Cabral and C. Leedom (1993), is a powerful technique for imaging and animating vector fields. We extend the LIC paradigm in three ways: the existing technique is limited to vector fields over a regular Cartesian grid and we extend it to vector fields over parametric surfaces, specifically those found in curvilinear grids, used in computational fluid dynamics simulations; periodic motion filters can be used to animate the flow visualization, but when the flow lies on a parametric surface, the motion appears misleading, and we explain why this problem arises and show how to adjust the LIC algorithm to handle it; we introduce a technique to visualize vector magnitude as well as vector direction, which is based on varying the frequency of the filter function and we develop a different technique based on kernel phase shifts which we have found to show substantially better results. Implementation of these algorithms utilizes texture-mapping hardware to run in real time, which allows them to be included in interactive applications.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信