{"title":"概率博弈语义","authors":"V. Danos, Russell Harmer","doi":"10.1109/LICS.2000.855770","DOIUrl":null,"url":null,"abstract":"A category of HO/N-style games and probabilistic strategies is developed where the possible choices of a strategy are quantified so as to give a measure of the likelihood of seeing a given play. A 2-sided die is shown to be universal in this category, in the sense that any strategy breaks down into a composition between some deterministic strategy and that die. The interpretative power of the category is then demonstrated by delineating a Cartesian closed subcategory which provides a fully abstract model of a probabilistic extension of Idealized Algol.","PeriodicalId":300113,"journal":{"name":"Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"Probabilistic game semantics\",\"authors\":\"V. Danos, Russell Harmer\",\"doi\":\"10.1109/LICS.2000.855770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A category of HO/N-style games and probabilistic strategies is developed where the possible choices of a strategy are quantified so as to give a measure of the likelihood of seeing a given play. A 2-sided die is shown to be universal in this category, in the sense that any strategy breaks down into a composition between some deterministic strategy and that die. The interpretative power of the category is then demonstrated by delineating a Cartesian closed subcategory which provides a fully abstract model of a probabilistic extension of Idealized Algol.\",\"PeriodicalId\":300113,\"journal\":{\"name\":\"Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2000.855770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2000.855770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A category of HO/N-style games and probabilistic strategies is developed where the possible choices of a strategy are quantified so as to give a measure of the likelihood of seeing a given play. A 2-sided die is shown to be universal in this category, in the sense that any strategy breaks down into a composition between some deterministic strategy and that die. The interpretative power of the category is then demonstrated by delineating a Cartesian closed subcategory which provides a fully abstract model of a probabilistic extension of Idealized Algol.