{"title":"航空航天结构健康监测信号和探测区域的建模","authors":"Jan Šplíchal, J. Hlinka","doi":"10.13164/conf.read.2018.17","DOIUrl":null,"url":null,"abstract":"This paper is focused on Structural Health Monitoring (SHM) for aerospace use. It analyses the performance of commercially available finite element (FE) software packages for the simulation of propagation of ultrasonic guided waves (UGW) in typical aerospace structures. The purpose of the research is to support activities leading to the introduction of UGW based health monitoring on aerospace structures, as well as to support the design of future structures with integrated health monitoring. Activities are demonstrated on panels with growing complexity (adding different materials, sensors, damage types etc.). FE simulations are used to identify “detection areas” of UGW sensors. This output can be directly applied to the design of future aerospace structures with an integrated SHM system (to ensure the proper planning of the placement of UGW sensors).","PeriodicalId":340623,"journal":{"name":"13th Research and Education in Aircraft Design: Conference proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of health monitoring signals and detection areas for aerospace structures\",\"authors\":\"Jan Šplíchal, J. Hlinka\",\"doi\":\"10.13164/conf.read.2018.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on Structural Health Monitoring (SHM) for aerospace use. It analyses the performance of commercially available finite element (FE) software packages for the simulation of propagation of ultrasonic guided waves (UGW) in typical aerospace structures. The purpose of the research is to support activities leading to the introduction of UGW based health monitoring on aerospace structures, as well as to support the design of future structures with integrated health monitoring. Activities are demonstrated on panels with growing complexity (adding different materials, sensors, damage types etc.). FE simulations are used to identify “detection areas” of UGW sensors. This output can be directly applied to the design of future aerospace structures with an integrated SHM system (to ensure the proper planning of the placement of UGW sensors).\",\"PeriodicalId\":340623,\"journal\":{\"name\":\"13th Research and Education in Aircraft Design: Conference proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th Research and Education in Aircraft Design: Conference proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13164/conf.read.2018.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th Research and Education in Aircraft Design: Conference proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/conf.read.2018.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling of health monitoring signals and detection areas for aerospace structures
This paper is focused on Structural Health Monitoring (SHM) for aerospace use. It analyses the performance of commercially available finite element (FE) software packages for the simulation of propagation of ultrasonic guided waves (UGW) in typical aerospace structures. The purpose of the research is to support activities leading to the introduction of UGW based health monitoring on aerospace structures, as well as to support the design of future structures with integrated health monitoring. Activities are demonstrated on panels with growing complexity (adding different materials, sensors, damage types etc.). FE simulations are used to identify “detection areas” of UGW sensors. This output can be directly applied to the design of future aerospace structures with an integrated SHM system (to ensure the proper planning of the placement of UGW sensors).