加泰罗尼亚和莫兹金积分表示

Peter N. McCalla, A. Nkwanta
{"title":"加泰罗尼亚和莫兹金积分表示","authors":"Peter N. McCalla, A. Nkwanta","doi":"10.1090/conm/759/15270","DOIUrl":null,"url":null,"abstract":"We present new proofs of eight integral representations of the Catalan numbers. Then, we create analogous integral representations of the Motzkin numbers and obtain new results. Most integral representations of counting sequences found in the literature are proved by using advanced mathematical techniques. All integral representations in this paper are proved by using standard techniques from integral calculus. Thus, we provide a more simplistic approach of proving integral representations of the Catalan and Motzkin numbers.","PeriodicalId":351002,"journal":{"name":"The Golden Anniversary Celebration of the\n National Association of Mathematicians","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Catalan and Motzkin integral\\n representations\",\"authors\":\"Peter N. McCalla, A. Nkwanta\",\"doi\":\"10.1090/conm/759/15270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new proofs of eight integral representations of the Catalan numbers. Then, we create analogous integral representations of the Motzkin numbers and obtain new results. Most integral representations of counting sequences found in the literature are proved by using advanced mathematical techniques. All integral representations in this paper are proved by using standard techniques from integral calculus. Thus, we provide a more simplistic approach of proving integral representations of the Catalan and Motzkin numbers.\",\"PeriodicalId\":351002,\"journal\":{\"name\":\"The Golden Anniversary Celebration of the\\n National Association of Mathematicians\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Golden Anniversary Celebration of the\\n National Association of Mathematicians\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/759/15270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Golden Anniversary Celebration of the\n National Association of Mathematicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/759/15270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们给出了加泰罗尼亚数的八个积分表示的新证明。然后,我们建立了类似的莫兹金数的积分表示,并得到了新的结果。在文献中发现的计数序列的大多数积分表示是用先进的数学技术证明的。用积分学中的标准方法证明了文中所有的积分表示。因此,我们提供了一种更简单的方法来证明加泰罗尼亚数和莫兹金数的积分表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catalan and Motzkin integral representations
We present new proofs of eight integral representations of the Catalan numbers. Then, we create analogous integral representations of the Motzkin numbers and obtain new results. Most integral representations of counting sequences found in the literature are proved by using advanced mathematical techniques. All integral representations in this paper are proved by using standard techniques from integral calculus. Thus, we provide a more simplistic approach of proving integral representations of the Catalan and Motzkin numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信