多温度退火:一种分层马尔可夫随机场模型能量最小化的新方法

J. Zerubia, Z. Kato, M. Berthod
{"title":"多温度退火:一种分层马尔可夫随机场模型能量最小化的新方法","authors":"J. Zerubia, Z. Kato, M. Berthod","doi":"10.1109/ICPR.1994.576342","DOIUrl":null,"url":null,"abstract":"As it is well known, optimization of the energy function of Markov random fields is very expensive. Hierarchical models have usually much more communication per pixel than monogrid ones. This is why classical annealing schemes are too slow, even on a parallel machine, to minimize the energy associated with such a model. However, taking benefit of the pyramidal structure of the model, we can define a new annealing scheme: the multitemperature annealing (MTA), which consists of associating higher temperatures to coarser levels, in order to be less sensitive to local minima at coarser grids. The convergence to the global optimum is proved by a generalisation of the annealing theorem of Geman and Geman (1984). We have applied the algorithm to image classification and tested it on synthetic and real images.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-temperature annealing: a new approach for the energy-minimization of hierarchical Markov random field models\",\"authors\":\"J. Zerubia, Z. Kato, M. Berthod\",\"doi\":\"10.1109/ICPR.1994.576342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As it is well known, optimization of the energy function of Markov random fields is very expensive. Hierarchical models have usually much more communication per pixel than monogrid ones. This is why classical annealing schemes are too slow, even on a parallel machine, to minimize the energy associated with such a model. However, taking benefit of the pyramidal structure of the model, we can define a new annealing scheme: the multitemperature annealing (MTA), which consists of associating higher temperatures to coarser levels, in order to be less sensitive to local minima at coarser grids. The convergence to the global optimum is proved by a generalisation of the annealing theorem of Geman and Geman (1984). We have applied the algorithm to image classification and tested it on synthetic and real images.\",\"PeriodicalId\":312019,\"journal\":{\"name\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"volume\":\"226 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1994.576342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

众所周知,马尔可夫随机场能量函数的优化是非常昂贵的。层级模型通常比单格模型每像素有更多的通信。这就是为什么即使在并行机器上,经典退火方案也太慢,无法最小化与这种模型相关的能量。然而,利用模型的金字塔结构,我们可以定义一种新的退火方案:多温退火(MTA),它包括将较高的温度与较粗的水平相关联,以便在较粗的网格上对局部最小值不那么敏感。通过推广Geman和Geman(1984)的退火定理,证明了该算法的全局最优收敛性。将该算法应用于图像分类,并在合成图像和真实图像上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-temperature annealing: a new approach for the energy-minimization of hierarchical Markov random field models
As it is well known, optimization of the energy function of Markov random fields is very expensive. Hierarchical models have usually much more communication per pixel than monogrid ones. This is why classical annealing schemes are too slow, even on a parallel machine, to minimize the energy associated with such a model. However, taking benefit of the pyramidal structure of the model, we can define a new annealing scheme: the multitemperature annealing (MTA), which consists of associating higher temperatures to coarser levels, in order to be less sensitive to local minima at coarser grids. The convergence to the global optimum is proved by a generalisation of the annealing theorem of Geman and Geman (1984). We have applied the algorithm to image classification and tested it on synthetic and real images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信