直骨架和Voronoi图的识别及其输入重构

T. Biedl, M. Held, S. Huber
{"title":"直骨架和Voronoi图的识别及其输入重构","authors":"T. Biedl, M. Held, S. Huber","doi":"10.1109/ISVD.2013.11","DOIUrl":null,"url":null,"abstract":"A straight skeleton is a well-known geometric structure, and several algorithms exist to construct the straight skeleton for a given polygon or planar straight-line graph. In this paper, we ask the reverse question: Given the straight skeleton (in form of a planar straight-line graph, with some rays to infinity), can we reconstruct a planar straight-line graph for which this was the straight skeleton? We show how to reduce this problem to the problem of finding a line that intersects a set of convex polygons. We can find these convex polygons and all such lines in $O(n\\log n)$ time in the Real RAM computer model, where $n$ denotes the number of edges of the input graph. We also explain how our approach can be used for recognizing Voronoi diagrams of points, thereby completing a partial solution provided by Ash and Bolker in 1985.","PeriodicalId":344701,"journal":{"name":"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Recognizing Straight Skeletons and Voronoi Diagrams and Reconstructing Their Input\",\"authors\":\"T. Biedl, M. Held, S. Huber\",\"doi\":\"10.1109/ISVD.2013.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A straight skeleton is a well-known geometric structure, and several algorithms exist to construct the straight skeleton for a given polygon or planar straight-line graph. In this paper, we ask the reverse question: Given the straight skeleton (in form of a planar straight-line graph, with some rays to infinity), can we reconstruct a planar straight-line graph for which this was the straight skeleton? We show how to reduce this problem to the problem of finding a line that intersects a set of convex polygons. We can find these convex polygons and all such lines in $O(n\\\\log n)$ time in the Real RAM computer model, where $n$ denotes the number of edges of the input graph. We also explain how our approach can be used for recognizing Voronoi diagrams of points, thereby completing a partial solution provided by Ash and Bolker in 1985.\",\"PeriodicalId\":344701,\"journal\":{\"name\":\"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2013.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2013.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

直线骨架是一种众所周知的几何结构,对于给定的多边形或平面直线图,存在几种构造直线骨架的算法。在本文中,我们提出了一个相反的问题:给定直线骨架(以平面直线图的形式,有一些射线到无穷远),我们能否重建一个以直线骨架为直线的平面直线图?我们将展示如何将这个问题简化为寻找与一组凸多边形相交的直线的问题。在Real RAM计算机模型中,我们可以在$O(n\log n)$时间内找到这些凸多边形和所有这样的直线,其中$n$表示输入图的边数。我们还解释了我们的方法如何用于识别点的Voronoi图,从而完成了Ash和Bolker在1985年提供的部分解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing Straight Skeletons and Voronoi Diagrams and Reconstructing Their Input
A straight skeleton is a well-known geometric structure, and several algorithms exist to construct the straight skeleton for a given polygon or planar straight-line graph. In this paper, we ask the reverse question: Given the straight skeleton (in form of a planar straight-line graph, with some rays to infinity), can we reconstruct a planar straight-line graph for which this was the straight skeleton? We show how to reduce this problem to the problem of finding a line that intersects a set of convex polygons. We can find these convex polygons and all such lines in $O(n\log n)$ time in the Real RAM computer model, where $n$ denotes the number of edges of the input graph. We also explain how our approach can be used for recognizing Voronoi diagrams of points, thereby completing a partial solution provided by Ash and Bolker in 1985.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信