一种稳定的数值微分的局部正则化方法及其正则化参数选择策略

Huilin Xu, Xiaoyan Xiang, Yan He
{"title":"一种稳定的数值微分的局部正则化方法及其正则化参数选择策略","authors":"Huilin Xu, Xiaoyan Xiang, Yan He","doi":"10.32861/ajams.71.27.35","DOIUrl":null,"url":null,"abstract":"The local regularization method for solving the first-order numerical differentiation problem is considered in this paper. The a-priori and a-posteriori selection strategy of the regularization parameter is introduced, and the convergence rate of local regularization solution under some assumption of the exact derivative is also given. Numerical comparison experiments show that the local regularization method can reflect sharp variations and oscillations of the exact derivative while suppress the noise of the given data effectively.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stable Approach for Numerical Differentiation by Local Regularization Method with its Regularization Parameter Selection Strategies\",\"authors\":\"Huilin Xu, Xiaoyan Xiang, Yan He\",\"doi\":\"10.32861/ajams.71.27.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The local regularization method for solving the first-order numerical differentiation problem is considered in this paper. The a-priori and a-posteriori selection strategy of the regularization parameter is introduced, and the convergence rate of local regularization solution under some assumption of the exact derivative is also given. Numerical comparison experiments show that the local regularization method can reflect sharp variations and oscillations of the exact derivative while suppress the noise of the given data effectively.\",\"PeriodicalId\":375032,\"journal\":{\"name\":\"Academic Journal of Applied Mathematical Sciences\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Applied Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32861/ajams.71.27.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/ajams.71.27.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了求解一阶数值微分问题的局部正则化方法。介绍了正则化参数的先验和后验选择策略,并给出了局部正则化解在精确导数假设下的收敛速度。数值对比实验表明,局部正则化方法可以有效地反映精确导数的剧烈变化和振荡,同时有效地抑制给定数据的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stable Approach for Numerical Differentiation by Local Regularization Method with its Regularization Parameter Selection Strategies
The local regularization method for solving the first-order numerical differentiation problem is considered in this paper. The a-priori and a-posteriori selection strategy of the regularization parameter is introduced, and the convergence rate of local regularization solution under some assumption of the exact derivative is also given. Numerical comparison experiments show that the local regularization method can reflect sharp variations and oscillations of the exact derivative while suppress the noise of the given data effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信